File size: 7,980 Bytes
7f3430b
 
c71d159
8527f42
 
7e66356
 
8527f42
 
7e66356
8527f42
92b0167
8527f42
c71d159
 
 
 
92b0167
 
b370650
 
 
 
 
 
 
 
 
 
 
 
 
 
c71d159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b370650
 
 
 
 
 
 
c71d159
b370650
 
 
 
 
 
 
 
 
 
 
 
c71d159
b370650
c71d159
b370650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8527f42
b370650
 
 
8527f42
7702656
 
8527f42
7702656
 
165cb65
 
 
 
 
 
 
 
 
 
 
 
 
 
8527f42
 
 
 
 
 
 
7e66356
8527f42
7702656
 
7e66356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8527f42
7e66356
 
 
 
0f95a25
 
 
 
 
 
7e66356
 
165cb65
7e66356
 
2eda2b6
7e66356
 
 
8527f42
0f95a25
8527f42
b370650
 
8527f42
7e66356
8527f42
 
 
 
7e66356
 
28374c4
934e44a
7e66356
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
import os
import logging
import requests
import tempfile
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
import torch
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
import threading

# Setup Neo4j connection
graph = Neo4jGraph(
    url="neo4j+s://6457770f.databases.neo4j.io",
    username="neo4j",
    password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)

# Define entity extraction and retrieval functions
class Entities(BaseModel):
    names: List[str] = Field(
        ..., description="All the person, organization, or business entities that appear in the text"
    )

entity_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are extracting organization and person entities from the text."),
    ("human", "Use the given format to extract information from the following input: {question}"),
])

chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

def remove_lucene_chars(input: str) -> str:
    return input.translate(str.maketrans({
        "\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
        "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
        "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
        ";": r"\;", " ": r"\ "
    }))

def generate_full_text_query(input: str) -> str:
    full_text_query = ""
    words = [el for el in remove_lucene_chars(input).split() if el]
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

# Setup logging to a file to capture debug information
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')

def structured_retriever(question: str) -> str:
    result = ""
    entities = entity_chain.invoke({"question": question})
    for entity in entities.names:
        response = graph.query(
            """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
            YIELD node,score
            CALL {
              WITH node
              MATCH (node)-[r:!MENTIONS]->(neighbor)
              RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
              UNION ALL
              WITH node
              MATCH (node)<-[r:!MENTIONS]-(neighbor)
              RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
            }
            RETURN output LIMIT 50
            """,
            {"query": generate_full_text_query(entity)},
        )
        result += "\n".join([el['output'] for el in response])
    return result

def retriever_neo4j(question: str):
    structured_data = structured_retriever(question)
    logging.debug(f"Structured data: {structured_data}")
    return structured_data

# Setup for condensing the follow-up questions
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""

CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
    buffer = []
    for human, ai in chat_history:
        buffer.append(HumanMessage(content=human))
        buffer.append(AIMessage(content=ai))
    return buffer

_search_query = RunnableBranch(
    (
        RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
            run_name="HasChatHistoryCheck"
        ),
        RunnablePassthrough.assign(
            chat_history=lambda x: _format_chat_history(x["chat_history"])
        )
        | CONDENSE_QUESTION_PROMPT
        | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
        | StrOutputParser(),
    ),
    RunnableLambda(lambda x: x["question"]),
)


template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
{context}
Question: {question}
Answer:"""


qa_prompt = ChatPromptTemplate.from_template(template)

# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
    RunnableParallel(
        {
            "context": RunnableLambda(lambda x: retriever_neo4j(x["question"])),
            "question": RunnablePassthrough(),
        }
    )
    | ChatPromptTemplate.from_template("Answer: {context} Question: {question}")
    | chat_model
    | StrOutputParser()
)

# Define the function to query Neo4j and get a response
def get_response(question):
    try:
        return chain_neo4j.invoke({"question": question})
    except Exception as e:
        return f"Error: {str(e)}"



# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        return audio_path
    else:
        return None

# Define ASR model for speech-to-text
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
    return_timestamps=True
)

# Function to handle voice input, generate response from Neo4j, and return audio output
def handle_voice_to_voice(audio):
    # Transcribe audio input to text
    sr, y = audio
    
    # Ensure that the audio is in float32 format
    y = y.astype(np.float32)
    y = y / np.max(np.abs(y))  # Normalize audio to range [-1.0, 1.0]

    # Process the audio data with Whisper ASR
    result = pipe_asr({"array": y, "sampling_rate": sr}, return_timestamps=False)
    question = result.get("text", "")

    # Get response using the transcribed question
    response = get_response(question)

    # Generate audio from the response
    audio_path = generate_audio_elevenlabs(response)
    return audio_path


# Define the Gradio interface
with gr.Blocks(theme="rawrsor1/Everforest") as demo:
    audio_input = gr.Audio(sources=["microphone"], type='numpy', streaming=True, label="Speak to Ask")
    submit_voice_btn = gr.Button("Submit Voice")
    audio_output = gr.Audio(label="Response Audio", type="filepath", autoplay=True, interactive=False)

    # Interactions for Submit Voice Button
    submit_voice_btn.click(
        fn=handle_voice_to_voice,
        inputs=audio_input,
        outputs=audio_output
    )

# Launch the Gradio interface
demo.launch(show_error=True, share=True)