File size: 6,075 Bytes
7f3430b
c1009f8
9916325
 
c1009f8
9916325
7a077d7
 
c1009f8
7a077d7
c1009f8
 
9916325
c1009f8
c71d159
c1009f8
c71d159
c1009f8
92b0167
 
c1009f8
 
 
 
 
 
b370650
c1009f8
 
 
 
 
 
 
 
 
 
 
 
b370650
c1009f8
 
 
 
b370650
c1009f8
 
 
 
 
 
 
f0bef0b
c1009f8
 
 
f0bef0b
c1009f8
 
 
 
b370650
c1009f8
 
 
 
 
 
 
 
 
 
 
 
 
 
b370650
7702656
 
8527f42
7702656
 
c1009f8
 
 
 
165cb65
 
 
c1009f8
 
 
 
 
 
165cb65
8527f42
 
 
 
 
 
 
c1009f8
8527f42
c1009f8
7702656
 
c1009f8
 
 
 
7e66356
c1009f8
 
8527f42
c1009f8
 
f0bef0b
c1009f8
 
 
 
 
28374c4
c1009f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
934e44a
c1009f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import torch
import requests
import tempfile
import threading
import numpy as np
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from langchain_openai import ChatOpenAI
from langchain_community.vectorstores.neo4j_vector import remove_lucene_chars
from langchain_community.graphs import Neo4jGraph
from langchain_experimental.graph_transformers import LLMGraphTransformer
from langchain_core.prompts import ChatPromptTemplate

# Neo4j setup
graph = Neo4jGraph(
    url="neo4j+s://c62d0d35.databases.neo4j.io",
    username="neo4j",
    password="_x8f-_aAQvs2NB0x6s0ZHSh3W_y-HrENDbgStvsUCM0"
)

# Define the ASR model with Whisper
model_id = 'openai/whisper-large-v3'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe_asr = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
    return_timestamps=True
)

# Function to reset the state after 10 seconds
def auto_reset_state():
    time.sleep(5)
    return None, ""  # Reset the state and clear input text

# Function to process audio input and transcribe it
def transcribe_function(stream, new_chunk):
    try:
        sr, y = new_chunk[0], new_chunk[1]
    except TypeError:
        print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
        return stream, "", None

    # Ensure y is not empty and is at least 1-dimensional
    if y is None or len(y) == 0:
        return stream, "", None

    y = y.astype(np.float32)
    max_abs_y = np.max(np.abs(y))
    if max_abs_y > 0:
        y = y / max_abs_y

    # Ensure stream is also at least 1-dimensional before concatenation
    if stream is not None and len(stream) > 0:
        stream = np.concatenate([stream, y])
    else:
        stream = y

    # Process the audio data for transcription
    result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
    full_text = result.get("text", "")

    # Start a thread to reset the state after 10 seconds
    threading.Thread(target=auto_reset_state).start()

    return stream, full_text, full_text

# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        return audio_path  # Return audio path for automatic playback
    else:
        print(f"Error generating audio: {response.text}")
        return None

# Define the template for generating responses based on context
template = """Use the following context to answer the question:
Context:
{context}

Question: {question}
Answer concisely:"""

# Create a prompt object using the template
prompt = ChatPromptTemplate.from_template(template)

# Function to generate a response using the prompt and the context
def generate_response_with_prompt(context, question):
    response = prompt.format(
        context=context,
        question=question
    )
    return response

# Define the function to generate a hybrid response using Neo4j and other retrieval methods
def retriever(question: str):
    # Structured data retrieval from Neo4j
    structured_query = f"""
    CALL db.index.fulltext.queryNodes('entity', $query, {{limit: 2}})
    YIELD node, score
    RETURN node.id AS entity, node.text AS context, score
    ORDER BY score DESC
    LIMIT 2
    """
    structured_data = graph.query(structured_query, {"query": generate_full_text_query(question)})
    structured_response = "\n".join([f"{record['entity']}: {record['context']}" for record in structured_data])

    # Unstructured data retrieval from vector store
    unstructured_data = [el.page_content for el in vector_index.similarity_search(question)]
    unstructured_response = "\n".join(unstructured_data)

    # Combine structured and unstructured responses
    combined_context = f"Structured data:\n{structured_response}\n\nUnstructured data:\n{unstructured_response}"
    
    # Generate the final response using the prompt template
    final_response = generate_response_with_prompt(combined_context, question)
    return final_response

# Function to handle the entire audio query and response process
def process_audio_query(audio_input):
    stream = None
    _, transcription, _ = transcribe_function(stream, audio_input)
    print(f"Transcription: {transcription}")
    
    # Retrieve hybrid response using Neo4j and other methods
    response_text = retriever(transcription)
    print(f"Response: {response_text}")
    
    # Generate audio from the response text
    audio_path = generate_audio_elevenlabs(response_text)
    return audio_path

# Create Gradio interface for audio input and output
interface = gr.Interface(
    fn=process_audio_query,
    inputs=gr.Audio(source="microphone", type="numpy"),
    outputs="audio",
    live=True,
    description="Ask questions via audio and receive audio responses."
)

# Launch the Gradio app
interface.launch()