Spaces:
Runtime error
Runtime error
File size: 10,074 Bytes
7f3430b c71d159 6f63f06 c71d159 92b0167 c71d159 c953580 cc3ca63 e0465a9 e073181 785de07 92b0167 c71d159 92b0167 c71d159 41d5ef2 c71d159 92b0167 c71d159 7f88d3d 91833b3 c71d159 7f88d3d c71d159 92b0167 c71d159 dd624f1 c71d159 7702656 5896bc7 7702656 5896bc7 6f63f06 ea67e08 6f63f06 ea67e08 6f63f06 ea67e08 6f63f06 ea67e08 91833b3 4451481 91833b3 e53b56a c71d159 ea67e08 785de07 ea67e08 785de07 da843cf 785de07 8385118 da843cf 785de07 da843cf 785de07 08b4bf1 da843cf ea67e08 6f63f06 4451481 6f63f06 e0a04c7 c71d159 da843cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from typing import List, Tuple
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
RunnableBranch,
RunnableLambda,
RunnablePassthrough,
RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import requests
import tempfile
from langchain.memory import ConversationBufferWindowMemory
import time
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=10,
return_messages=True
)
# Setup Neo4j
graph = Neo4jGraph(
url="neo4j+s://6457770f.databases.neo4j.io",
username="neo4j",
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)
# Define entity extraction and retrieval functions
class Entities(BaseModel):
names: List[str] = Field(
..., description="All the person, organization, or business entities that appear in the text"
)
entity_prompt = ChatPromptTemplate.from_messages([
("system", "You are extracting organization and person entities from the text."),
("human", "Use the given format to extract information from the following input: {question}"),
])
chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)
def remove_lucene_chars(input: str) -> str:
return input.translate(str.maketrans({
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
";": r"\;", " ": r"\ "
}))
def generate_full_text_query(input: str) -> str:
full_text_query = ""
words = [el for el in remove_lucene_chars(input).split() if el]
for word in words[:-1]:
full_text_query += f" {word}~2 AND"
full_text_query += f" {words[-1]}~2"
return full_text_query.strip()
def structured_retriever(question: str) -> str:
result = ""
entities = entity_chain.invoke({"question": question})
for entity in entities.names:
response = graph.query(
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
YIELD node,score
CALL {
WITH node
MATCH (node)-[r:!MENTIONS]->(neighbor)
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
UNION ALL
WITH node
MATCH (node)<-[r:!MENTIONS]-(neighbor)
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output
}
RETURN output LIMIT 50
""",
{"query": generate_full_text_query(entity)},
)
result += "\n".join([el['output'] for el in response])
return result
def retriever_neo4j(question: str):
structured_data = structured_retriever(question)
logging.debug(f"Structured data: {structured_data}")
return structured_data
# Setup for condensing the follow-up questions
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
_search_query = RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
| StrOutputParser(),
),
RunnableLambda(lambda x: x["question"]),
)
# Define the QA prompt template
#template = """As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama,
#I assist visitors in discovering the best that the city has to offer. I also assist the visitors about various sports and activities.
#I am well-equipped to provide valuable insights and recommendations.
#I draw upon my extensive knowledge of the area, including perennial events and historical context.
#In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience,
#please share, and I'll be glad to help. Remember, keep the response precise short, crisp, and accurate response and don't greet.
#{context}
#Question: {question}
#Helpful Answer:"""
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
{context}
Question: {question}
Answer:"""
qa_prompt = ChatPromptTemplate.from_template(template)
# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
RunnableParallel(
{
"context": _search_query | retriever_neo4j,
"question": RunnablePassthrough(),
}
)
| qa_prompt
| chat_model
| StrOutputParser()
)
# Define the function to get the response
def get_response(question):
try:
return chain_neo4j.invoke({"question": question})
except Exception as e:
return f"Error: {str(e)}"
# Define the function to clear input and output
def clear_fields():
return [],"",None
# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
XI_API_KEY = os.environ['ELEVENLABS_API']
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
headers = {
"Accept": "application/json",
"xi-api-key": XI_API_KEY
}
data = {
"text": str(text),
"model_id": "eleven_multilingual_v2",
"voice_settings": {
"stability": 1.0,
"similarity_boost": 0.0,
"style": 0.60,
"use_speaker_boost": False
}
}
response = requests.post(tts_url, headers=headers, json=data, stream=True)
if response.ok:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
for chunk in response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
audio_path = f.name
logging.debug(f"Audio saved to {audio_path}")
return audio_path # Return audio path for automatic playback
else:
logging.error(f"Error generating audio: {response.text}")
return None
# Define function to generate a streaming response
def chat_with_bot(messages, user_message):
# Add user message to the chat history
messages.append((user_message, ""))
response = get_response(user_message)
# Simulate streaming response by iterating over each character in the response
for character in response:
messages[-1] = (user_message, messages[-1][1] + character)
yield messages # Stream each character
time.sleep(0.05) # Adjust delay as needed for real-time effect
yield messages # Final yield to ensure full response is displayed
# Function to generate audio with Eleven Labs TTS from the last bot response
def generate_audio_from_last_response(history):
# Get the most recent bot response from the chat history
if history and len(history) > 0:
recent_response = history[-1][1] # The second item in the tuple is the bot response text
if recent_response:
return generate_audio_elevenlabs(recent_response)
return None
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
with gr.Row():
with gr.Column():
#response_output = gr.Textbox(
#label="Response",
#placeholder="The response will appear here...",
#interactive=False,
#lines=10, # Sets the number of visible lines
#max_lines=20 # Allows for a larger display area if needed
#)
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
with gr.Column():
audio_output = gr.Audio(label="Audio", type="filepath", interactive=False)
with gr.Row():
with gr.Column():
get_response_btn = gr.Button("Get Response")
with gr.Column():
generate_audio_btn = gr.Button("Generate Audio")
with gr.Column():
clean_btn = gr.Button("Clean")
# Define interactions
#get_response_btn.click(fn=get_response, inputs=question_input, outputs=response_output)
#generate_audio_btn.click(fn=generate_audio_elevenlabs, inputs=response_output, outputs=audio_output)
#clean_btn.click(fn=clear_fields, inputs=[], outputs=[question_input, response_output])
# Define interactions
get_response_btn.click(fn=chat_with_bot, inputs=[chatbot, question_input], outputs=chatbot)
generate_audio_btn.click(fn=generate_audio_from_last_response, inputs=chatbot, outputs=audio_output)
clean_btn.click(fn=clear_fields, inputs=[], outputs=[chatbot, question_input, audio_output])
# Launch the Gradio interface
demo.launch(show_error=True)
|