File size: 10,074 Bytes
7f3430b
 
c71d159
 
 
 
 
 
6f63f06
c71d159
 
 
 
 
 
92b0167
c71d159
c953580
cc3ca63
e0465a9
e073181
785de07
 
 
 
 
 
 
 
92b0167
c71d159
 
 
 
 
92b0167
 
c71d159
 
 
 
 
 
 
 
 
 
 
41d5ef2
c71d159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b0167
 
c71d159
7f88d3d
 
 
 
 
 
 
 
 
 
 
 
91833b3
c71d159
 
7f88d3d
 
c71d159
 
 
 
 
 
 
 
 
 
 
 
 
 
92b0167
 
c71d159
 
 
 
 
 
 
 
 
dd624f1
c71d159
7702656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5896bc7
7702656
 
 
 
5896bc7
6f63f06
ea67e08
 
 
 
 
6f63f06
ea67e08
 
6f63f06
 
ea67e08
6f63f06
ea67e08
 
91833b3
4451481
 
 
 
 
 
91833b3
 
 
e53b56a
c71d159
 
ea67e08
785de07
 
ea67e08
 
 
 
 
 
 
785de07
da843cf
785de07
8385118
da843cf
785de07
da843cf
785de07
 
 
 
 
08b4bf1
da843cf
ea67e08
 
 
 
 
6f63f06
4451481
6f63f06
e0a04c7
c71d159
da843cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import gradio as gr
import os
import logging
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
from langchain_community.graphs import Neo4jGraph
from typing import List, Tuple
from pydantic import BaseModel, Field
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.runnables import (
    RunnableBranch,
    RunnableLambda,
    RunnablePassthrough,
    RunnableParallel,
)
from langchain_core.prompts.prompt import PromptTemplate
import requests
import tempfile
from langchain.memory import ConversationBufferWindowMemory
import time



conversational_memory = ConversationBufferWindowMemory(
        memory_key='chat_history',
        k=10,
        return_messages=True
    )

# Setup Neo4j
graph = Neo4jGraph(
    url="neo4j+s://6457770f.databases.neo4j.io",
    username="neo4j",
    password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4"
)

# Define entity extraction and retrieval functions
class Entities(BaseModel):
    names: List[str] = Field(
        ..., description="All the person, organization, or business entities that appear in the text"
    )

entity_prompt = ChatPromptTemplate.from_messages([
    ("system", "You are extracting organization and person entities from the text."),
    ("human", "Use the given format to extract information from the following input: {question}"),
])

chat_model = ChatOpenAI(temperature=0, model_name="gpt-4o", api_key=os.environ['OPENAI_API_KEY'])
entity_chain = entity_prompt | chat_model.with_structured_output(Entities)

def remove_lucene_chars(input: str) -> str:
    return input.translate(str.maketrans({
        "\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!",
        "(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]",
        "^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"',
        ";": r"\;", " ": r"\ "
    }))

def generate_full_text_query(input: str) -> str:
    full_text_query = ""
    words = [el for el in remove_lucene_chars(input).split() if el]
    for word in words[:-1]:
        full_text_query += f" {word}~2 AND"
    full_text_query += f" {words[-1]}~2"
    return full_text_query.strip()

def structured_retriever(question: str) -> str:
    result = ""
    entities = entity_chain.invoke({"question": question})
    for entity in entities.names:
        response = graph.query(
            """CALL db.index.fulltext.queryNodes('entity', $query, {limit:2})
            YIELD node,score
            CALL {
              WITH node
              MATCH (node)-[r:!MENTIONS]->(neighbor)
              RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output
              UNION ALL
              WITH node
              MATCH (node)<-[r:!MENTIONS]-(neighbor)
              RETURN neighbor.id + ' - ' + type(r) + ' -> ' +  node.id AS output
            }
            RETURN output LIMIT 50
            """,
            {"query": generate_full_text_query(entity)},
        )
        result += "\n".join([el['output'] for el in response])
    return result

def retriever_neo4j(question: str):
    structured_data = structured_retriever(question)
    logging.debug(f"Structured data: {structured_data}")
    return structured_data

# Setup for condensing the follow-up questions
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question,
in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""

CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

def _format_chat_history(chat_history: list[tuple[str, str]]) -> list:
    buffer = []
    for human, ai in chat_history:
        buffer.append(HumanMessage(content=human))
        buffer.append(AIMessage(content=ai))
    return buffer

_search_query = RunnableBranch(
    (
        RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
            run_name="HasChatHistoryCheck"
        ),
        RunnablePassthrough.assign(
            chat_history=lambda x: _format_chat_history(x["chat_history"])
        )
        | CONDENSE_QUESTION_PROMPT
        | ChatOpenAI(temperature=0, api_key=os.environ['OPENAI_API_KEY'])
        | StrOutputParser(),
    ),
    RunnableLambda(lambda x: x["question"]),
)

# Define the QA prompt template
#template = """As an expert concierge known for being helpful and a renowned guide for Birmingham, Alabama, 
#I assist visitors in discovering the best that the city has to offer. I also assist the visitors about various sports and activities.
#I am well-equipped to provide valuable insights and recommendations. 
#I draw upon my extensive knowledge of the area, including perennial events and historical context.
#In light of this, how can I assist you today? Feel free to ask any questions or seek recommendations for your day in Birmingham. If there's anything specific you'd like to know or experience, 
#please share, and I'll be glad to help. Remember, keep the response precise short, crisp, and accurate response and don't greet.
#{context}
#Question: {question}
#Helpful Answer:"""


template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities.
Ask your question directly, and I'll provide a precise and quick,short and crisp response in a conversational way without any Greet.
{context}
Question: {question}
Answer:"""


qa_prompt = ChatPromptTemplate.from_template(template)

# Define the chain for Neo4j-based retrieval and response generation
chain_neo4j = (
    RunnableParallel(
        {
            "context": _search_query | retriever_neo4j,
            "question": RunnablePassthrough(),
        }
    )
    | qa_prompt
    | chat_model
    | StrOutputParser()
)

# Define the function to get the response
def get_response(question):
    try:
        return chain_neo4j.invoke({"question": question})
    except Exception as e:
        return f"Error: {str(e)}"

# Define the function to clear input and output
def clear_fields():
    return [],"",None

# Function to generate audio with Eleven Labs TTS
def generate_audio_elevenlabs(text):
    XI_API_KEY = os.environ['ELEVENLABS_API']
    VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW'
    tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
    headers = {
        "Accept": "application/json",
        "xi-api-key": XI_API_KEY
    }
    data = {
        "text": str(text),
        "model_id": "eleven_multilingual_v2",
        "voice_settings": {
            "stability": 1.0,
            "similarity_boost": 0.0,
            "style": 0.60,
            "use_speaker_boost": False
        }
    }
    response = requests.post(tts_url, headers=headers, json=data, stream=True)
    if response.ok:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
            for chunk in response.iter_content(chunk_size=1024):
                if chunk:
                    f.write(chunk)
            audio_path = f.name
        logging.debug(f"Audio saved to {audio_path}")
        return audio_path  # Return audio path for automatic playback
    else:
        logging.error(f"Error generating audio: {response.text}")
        return None


# Define function to generate a streaming response
def chat_with_bot(messages, user_message):
    # Add user message to the chat history
    messages.append((user_message, ""))
    response = get_response(user_message)
    
    # Simulate streaming response by iterating over each character in the response
    for character in response:
        messages[-1] = (user_message, messages[-1][1] + character)
        yield messages  # Stream each character
        time.sleep(0.05)  # Adjust delay as needed for real-time effect

    yield messages  # Final yield to ensure full response is displayed


# Function to generate audio with Eleven Labs TTS from the last bot response
def generate_audio_from_last_response(history):
    # Get the most recent bot response from the chat history
    if history and len(history) > 0:
        recent_response = history[-1][1]  # The second item in the tuple is the bot response text
        if recent_response:
            return generate_audio_elevenlabs(recent_response)
    return None



# Create the Gradio Blocks interface
with gr.Blocks() as demo:
    chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False)
    with gr.Row():
        with gr.Column():
            #response_output = gr.Textbox(
                #label="Response",
                #placeholder="The response will appear here...",
                #interactive=False,
                #lines=10,  # Sets the number of visible lines
                #max_lines=20  # Allows for a larger display area if needed
            #)
            question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
        
        with gr.Column():
            audio_output = gr.Audio(label="Audio", type="filepath", interactive=False)
    
    with gr.Row():
        with gr.Column():
            get_response_btn = gr.Button("Get Response")
        with gr.Column():
            generate_audio_btn = gr.Button("Generate Audio")
        with gr.Column():
            clean_btn = gr.Button("Clean")
    
    # Define interactions
    #get_response_btn.click(fn=get_response, inputs=question_input, outputs=response_output)
    #generate_audio_btn.click(fn=generate_audio_elevenlabs, inputs=response_output, outputs=audio_output)
    #clean_btn.click(fn=clear_fields, inputs=[], outputs=[question_input, response_output])

    # Define interactions
    get_response_btn.click(fn=chat_with_bot, inputs=[chatbot, question_input], outputs=chatbot)
    generate_audio_btn.click(fn=generate_audio_from_last_response, inputs=chatbot, outputs=audio_output)
    clean_btn.click(fn=clear_fields, inputs=[], outputs=[chatbot, question_input, audio_output])

# Launch the Gradio interface
demo.launch(show_error=True)