Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import logging | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.graphs import Neo4jGraph | |
from langchain_groq import ChatGroq | |
from langchain.chains import GraphCypherQAChain | |
from pydantic import BaseModel, Field | |
from langchain_core.messages import AIMessage, HumanMessage | |
from langchain_core.runnables import ( | |
RunnableBranch, | |
RunnableLambda, | |
RunnablePassthrough, | |
RunnableParallel, | |
) | |
from langchain_core.prompts.prompt import PromptTemplate | |
import tempfile | |
import time | |
import threading | |
import torch | |
import numpy as np | |
import requests | |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor | |
# Setup logging to a file to capture debug information | |
logging.basicConfig(filename='neo4j_retrieval.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Setup for conversational memory | |
conversational_memory = ConversationBufferWindowMemory( | |
memory_key='chat_history', | |
k=10, | |
return_messages=True | |
) | |
# Setup Neo4j | |
graph = Neo4jGraph( | |
url="neo4j+s://6457770f.databases.neo4j.io", | |
username="neo4j", | |
password="Z10duoPkKCtENuOukw3eIlvl0xJWKtrVSr-_hGX1LQ4" | |
) | |
# Setup the Groq model | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
llm = ChatGroq(groq_api_key=groq_api_key, model_name="Gemma2-9b-It") | |
# Define entity extraction and retrieval functions | |
class Entities(BaseModel): | |
names: List[str] = Field( | |
..., description="All the person, organization, or business entities that appear in the text" | |
) | |
entity_prompt = ChatPromptTemplate.from_messages([ | |
("system", "You are extracting organization and person entities from the text."), | |
("human", "Use the given format to extract information from the following input: {question}"), | |
]) | |
entity_chain = entity_prompt | llm.with_structured_output(Entities) | |
def remove_lucene_chars(input: str) -> str: | |
return input.translate(str.maketrans({ | |
"\\": r"\\", "+": r"\+", "-": r"\-", "&": r"\&", "|": r"\|", "!": r"\!", | |
"(": r"\(", ")": r"\)", "{": r"\{", "}": r"\}", "[": r"\[", "]": r"\]", | |
"^": r"\^", "~": r"\~", "*": r"\*", "?": r"\?", ":": r"\:", '"': r'\"', | |
";": r"\;", " ": r"\ " | |
})) | |
def generate_full_text_query(input: str) -> str: | |
full_text_query = "" | |
words = [el for el in remove_lucene_chars(input).split() if el] | |
for word in words[:-1]: | |
full_text_query += f" {word}~2 AND" | |
full_text_query += f" {words[-1]}~2" | |
return full_text_query.strip() | |
def structured_retriever(question: str) -> str: | |
result = "" | |
entities = entity_chain.invoke({"question": question}) | |
for entity in entities.names: | |
response = graph.query( | |
"""CALL db.index.fulltext.queryNodes('entity', $query, {limit:2}) | |
YIELD node,score | |
CALL { | |
WITH node | |
MATCH (node)-[r:!MENTIONS]->(neighbor) | |
RETURN node.id + ' - ' + type(r) + ' -> ' + neighbor.id AS output | |
UNION ALL | |
WITH node | |
MATCH (node)<-[r:!MENTIONS]-(neighbor) | |
RETURN neighbor.id + ' - ' + type(r) + ' -> ' + node.id AS output | |
} | |
RETURN output LIMIT 50 | |
""", | |
{"query": generate_full_text_query(entity)}, | |
) | |
result += "\n".join([el['output'] for el in response]) | |
return result | |
def retriever_neo4j(question: str): | |
structured_data = structured_retriever(question) | |
logging.debug(f"Structured data: {structured_data}") | |
return structured_data | |
# Condense follow-up questions to standalone | |
_template = """Given the following conversation and a follow-up question, rephrase the follow-up question to be a standalone question, | |
in its original language. | |
Chat History: | |
{chat_history} | |
Follow Up Input: {question} | |
Standalone question:""" | |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) | |
def _format_chat_history(chat_history: list[tuple[str, str]]) -> list: | |
buffer = [] | |
for human, ai in chat_history: | |
buffer.append(HumanMessage(content=human)) | |
buffer.append(AIMessage(content=ai)) | |
return buffer | |
_search_query = RunnableBranch( | |
( | |
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config( | |
run_name="HasChatHistoryCheck" | |
), | |
RunnablePassthrough.assign( | |
chat_history=lambda x: _format_chat_history(x["chat_history"]) | |
) | |
| CONDENSE_QUESTION_PROMPT | |
| llm | |
| StrOutputParser(), | |
), | |
RunnableLambda(lambda x: x["question"]), | |
) | |
# Define the prompt for response generation | |
template = """I am a guide for Birmingham, Alabama. I can provide recommendations and insights about the city, including events and activities. | |
Ask your question directly, and I'll provide a precise, short, and crisp response in a conversational way without any greeting. | |
{context} | |
Question: {question} | |
Answer:""" | |
qa_prompt = ChatPromptTemplate.from_template(template) | |
# Define the chain for Neo4j-based retrieval and response generation | |
chain_neo4j = ( | |
RunnableParallel( | |
{ | |
"context": _search_query | retriever_neo4j, | |
"question": RunnablePassthrough(), | |
} | |
) | |
| qa_prompt | |
| llm | |
| StrOutputParser() | |
) | |
# Define the function to get the response | |
def get_response(question): | |
try: | |
return chain_neo4j.invoke({"question": question}) | |
except Exception as e: | |
logging.error(f"Error generating response: {str(e)}") | |
return f"Error: {str(e)}" | |
# Define the function to clear input and output | |
def clear_fields(): | |
return [], "", None | |
# Function to generate audio with Eleven Labs TTS | |
def generate_audio_elevenlabs(text): | |
XI_API_KEY = os.environ['ELEVENLABS_API'] | |
VOICE_ID = 'ehbJzYLQFpwbJmGkqbnW' | |
tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream" | |
headers = {"Accept": "application/json", "xi-api-key": XI_API_KEY} | |
data = {"text": str(text), "model_id": "eleven_multilingual_v2", "voice_settings": {"stability": 1.0}} | |
response = requests.post(tts_url, headers=headers, json=data, stream=True) | |
if response.ok: | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f: | |
for chunk in response.iter_content(chunk_size=1024): | |
if chunk: | |
f.write(chunk) | |
audio_path = f.name | |
logging.debug(f"Audio saved to {audio_path}") | |
return audio_path # Return audio path for playback | |
else: | |
logging.error(f"Error generating audio: {response.text}") | |
return None | |
# Create the Gradio Blocks interface | |
with gr.Blocks(theme="rawrsor1/Everforest") as demo: | |
chatbot = gr.Chatbot([], elem_id="RADAR", bubble_full_width=False) | |
with gr.Row(): | |
with gr.Column(): | |
question_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...") | |
with gr.Column(): | |
audio_output = gr.Audio(label="Audio", type="filepath", autoplay=True, interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
get_response_btn = gr.Button("Get Response") | |
with gr.Column(): | |
generate_audio_btn = gr.Button("Generate Audio") | |
with gr.Column(): | |
clear_state_btn = gr.Button("Clear State") | |
# Define interactions for buttons | |
get_response_btn.click(fn=get_response, inputs=question_input, outputs=chatbot) | |
generate_audio_btn.click(fn=generate_audio_elevenlabs, inputs=chatbot, outputs=audio_output) | |
clear_state_btn.click(fn=clear_fields, outputs=[chatbot, question_input, audio_output]) | |
# Launch the Gradio interface | |
demo.launch(show_error=True) | |