Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -32,6 +32,7 @@ from pathlib import Path
|
|
32 |
import torchaudio
|
33 |
import numpy as np
|
34 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
35 |
|
36 |
|
37 |
# Neo4j imports
|
@@ -84,7 +85,7 @@ logging.basicConfig(level=logging.DEBUG)
|
|
84 |
|
85 |
|
86 |
# embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
87 |
-
embeddings
|
88 |
|
89 |
|
90 |
#Initialization
|
@@ -121,12 +122,12 @@ gpt4o_mini_model = initialize_gpt4o_mini_model()
|
|
121 |
|
122 |
# Existing embeddings and vector store for GPT-4o
|
123 |
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
124 |
-
gpt_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=
|
125 |
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})
|
126 |
|
127 |
# New vector store setup for Phi-3.5
|
128 |
-
phi_embeddings =
|
129 |
-
phi_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=
|
130 |
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
|
131 |
|
132 |
|
@@ -340,13 +341,12 @@ Ti prego di fornire i dettagli riguardanti il documento che sto per condividere,
|
|
340 |
Ecco i dettagli del documento da considerare:
|
341 |
- Nome del documento:
|
342 |
- Pagina:
|
343 |
-
- Altre informazioni necessarie
|
344 |
-
<|end|>
|
345 |
<|user|>
|
346 |
{context}
|
347 |
Question: {question}<|end|>
|
348 |
<|assistant|>
|
349 |
-
Sure! Here's the information
|
350 |
"""
|
351 |
|
352 |
|
@@ -463,129 +463,153 @@ Detailed Answer:
|
|
463 |
|
464 |
import traceback
|
465 |
|
466 |
-
def generate_answer(message, choice, retrieval_mode, selected_model):
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
|
547 |
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
|
|
|
|
|
|
|
|
|
|
584 |
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
|
590 |
|
591 |
|
@@ -1071,16 +1095,32 @@ def handle_retrieval_mode_change(choice):
|
|
1071 |
|
1072 |
|
1073 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1074 |
def handle_model_choice_change(selected_model):
|
1075 |
-
if selected_model == "LM-2":
|
1076 |
# Disable retrieval mode and select style when LM-2 is selected
|
1077 |
-
return
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
|
|
1081 |
else:
|
1082 |
-
#
|
1083 |
-
return
|
|
|
|
|
|
|
|
|
1084 |
|
1085 |
#Flux Coding
|
1086 |
|
@@ -1340,9 +1380,9 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1340 |
state = gr.State()
|
1341 |
|
1342 |
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
|
1343 |
-
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
|
1344 |
-
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB")
|
1345 |
-
model_choice = gr.Dropdown(label="Choose Model", choices=["LM-
|
1346 |
|
1347 |
# Link the dropdown change to handle_model_choice_change
|
1348 |
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
|
|
|
32 |
import torchaudio
|
33 |
import numpy as np
|
34 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
35 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
36 |
|
37 |
|
38 |
# Neo4j imports
|
|
|
85 |
|
86 |
|
87 |
# embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
88 |
+
embeddings= HuggingFaceEmbeddings(model="sentence-transformers/all-mpnet-base-v2")
|
89 |
|
90 |
|
91 |
#Initialization
|
|
|
122 |
|
123 |
# Existing embeddings and vector store for GPT-4o
|
124 |
gpt_embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
|
125 |
+
gpt_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=embeddings)
|
126 |
gpt_retriever = gpt_vectorstore.as_retriever(search_kwargs={'k': 5})
|
127 |
|
128 |
# New vector store setup for Phi-3.5
|
129 |
+
phi_embeddings = embeddings_phi
|
130 |
+
phi_vectorstore = PineconeVectorStore(index_name="italyv109102024", embedding=embeddings)
|
131 |
phi_retriever = phi_vectorstore.as_retriever(search_kwargs={'k': 5})
|
132 |
|
133 |
|
|
|
341 |
Ecco i dettagli del documento da considerare:
|
342 |
- Nome del documento:
|
343 |
- Pagina:
|
344 |
+
- Altre informazioni necessarie:.<|end|>
|
|
|
345 |
<|user|>
|
346 |
{context}
|
347 |
Question: {question}<|end|>
|
348 |
<|assistant|>
|
349 |
+
Sure! Here's the information:
|
350 |
"""
|
351 |
|
352 |
|
|
|
463 |
|
464 |
import traceback
|
465 |
|
466 |
+
# def generate_answer(message, choice, retrieval_mode, selected_model):
|
467 |
+
# logging.debug(f"generate_answer called with choice: {choice}, retrieval_mode: {retrieval_mode}, and selected_model: {selected_model}")
|
468 |
+
|
469 |
+
# # Logic for disabling options for Phi-3.5
|
470 |
+
# if selected_model == "LM-2":
|
471 |
+
# choice = None
|
472 |
+
# retrieval_mode = None
|
473 |
+
|
474 |
+
# try:
|
475 |
+
# # Select the appropriate template based on the choice and model
|
476 |
+
# if choice == "Details" and selected_model == chat_model1: # GPT-4o-mini
|
477 |
+
# prompt_template = PromptTemplate(input_variables=["context", "question"], template=gpt4o_mini_template_details)
|
478 |
+
# elif choice == "Details":
|
479 |
+
# prompt_template = QA_CHAIN_PROMPT_1
|
480 |
+
# elif choice == "Conversational":
|
481 |
+
# prompt_template = QA_CHAIN_PROMPT_2
|
482 |
+
# else:
|
483 |
+
# prompt_template = QA_CHAIN_PROMPT_1 # Fallback to template1
|
484 |
+
|
485 |
+
# # # Handle hotel-related queries
|
486 |
+
# # if "hotel" in message.lower() or "hotels" in message.lower() and "birmingham" in message.lower():
|
487 |
+
# # logging.debug("Handling hotel-related query")
|
488 |
+
# # response = fetch_google_hotels()
|
489 |
+
# # logging.debug(f"Hotel response: {response}")
|
490 |
+
# # return response, extract_addresses(response)
|
491 |
+
|
492 |
+
# # # Handle restaurant-related queries
|
493 |
+
# # if "restaurant" in message.lower() or "restaurants" in message.lower() and "birmingham" in message.lower():
|
494 |
+
# # logging.debug("Handling restaurant-related query")
|
495 |
+
# # response = fetch_yelp_restaurants()
|
496 |
+
# # logging.debug(f"Restaurant response: {response}")
|
497 |
+
# # return response, extract_addresses(response)
|
498 |
+
|
499 |
+
# # # Handle flight-related queries
|
500 |
+
# # if "flight" in message.lower() or "flights" in message.lower() and "birmingham" in message.lower():
|
501 |
+
# # logging.debug("Handling flight-related query")
|
502 |
+
# # response = fetch_google_flights()
|
503 |
+
# # logging.debug(f"Flight response: {response}")
|
504 |
+
# # return response, extract_addresses(response)
|
505 |
+
|
506 |
+
# # Retrieval-based response
|
507 |
+
# if retrieval_mode == "VDB":
|
508 |
+
# logging.debug("Using VDB retrieval mode")
|
509 |
+
# if selected_model == chat_model:
|
510 |
+
# logging.debug("Selected model: LM-1")
|
511 |
+
# retriever = gpt_retriever
|
512 |
+
# context = retriever.get_relevant_documents(message)
|
513 |
+
# logging.debug(f"Retrieved context: {context}")
|
514 |
+
|
515 |
+
# prompt = prompt_template.format(context=context, question=message)
|
516 |
+
# logging.debug(f"Generated prompt: {prompt}")
|
517 |
+
|
518 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
519 |
+
# llm=chat_model,
|
520 |
+
# chain_type="stuff",
|
521 |
+
# retriever=retriever,
|
522 |
+
# chain_type_kwargs={"prompt": prompt_template}
|
523 |
+
# )
|
524 |
+
# response = qa_chain({"query": message})
|
525 |
+
# logging.debug(f"LM-1 response: {response}")
|
526 |
+
# return response['result'], extract_addresses(response['result'])
|
527 |
|
528 |
+
# elif selected_model == chat_model1:
|
529 |
+
# logging.debug("Selected model: LM-3")
|
530 |
+
# retriever = gpt_retriever
|
531 |
+
# context = retriever.get_relevant_documents(message)
|
532 |
+
# logging.debug(f"Retrieved context: {context}")
|
533 |
+
|
534 |
+
# prompt = prompt_template.format(context=context, question=message)
|
535 |
+
# logging.debug(f"Generated prompt: {prompt}")
|
536 |
+
|
537 |
+
# qa_chain = RetrievalQA.from_chain_type(
|
538 |
+
# llm=chat_model1,
|
539 |
+
# chain_type="stuff",
|
540 |
+
# retriever=retriever,
|
541 |
+
# chain_type_kwargs={"prompt": prompt_template}
|
542 |
+
# )
|
543 |
+
# response = qa_chain({"query": message})
|
544 |
+
# logging.debug(f"LM-3 response: {response}")
|
545 |
+
# return response['result'], extract_addresses(response['result'])
|
546 |
|
547 |
|
548 |
|
549 |
+
# elif selected_model == phi_pipe:
|
550 |
+
# logging.debug("Selected model: LM-2")
|
551 |
+
# retriever = phi_retriever
|
552 |
+
# context_documents = retriever.get_relevant_documents(message)
|
553 |
+
# context = "\n".join([doc.page_content for doc in context_documents])
|
554 |
+
# logging.debug(f"Retrieved context for LM-2: {context}")
|
555 |
+
|
556 |
+
# # Use the correct template variable
|
557 |
+
# prompt = phi_custom_template.format(context=context, question=message)
|
558 |
+
# logging.debug(f"Generated LM-2 prompt: {prompt}")
|
559 |
+
|
560 |
+
# response = selected_model(prompt, **{
|
561 |
+
# "max_new_tokens": 400,
|
562 |
+
# "return_full_text": True,
|
563 |
+
# "temperature": 0.7,
|
564 |
+
# "do_sample": True,
|
565 |
+
# })
|
566 |
+
|
567 |
+
# if response:
|
568 |
+
# generated_text = response[0]['generated_text']
|
569 |
+
# logging.debug(f"LM-2 Response: {generated_text}")
|
570 |
+
# cleaned_response = clean_response(generated_text)
|
571 |
+
# return cleaned_response, extract_addresses(cleaned_response)
|
572 |
+
# else:
|
573 |
+
# logging.error("LM-2 did not return any response.")
|
574 |
+
# return "No response generated.", []
|
575 |
+
|
576 |
+
# elif retrieval_mode == "KGF":
|
577 |
+
# logging.debug("Using KGF retrieval mode")
|
578 |
+
# response = chain_neo4j.invoke({"question": message})
|
579 |
+
# logging.debug(f"KGF response: {response}")
|
580 |
+
# return response, extract_addresses(response)
|
581 |
+
# else:
|
582 |
+
# logging.error("Invalid retrieval mode selected.")
|
583 |
+
# return "Invalid retrieval mode selected.", []
|
584 |
+
|
585 |
+
# except Exception as e:
|
586 |
+
# logging.error(f"Error in generate_answer: {str(e)}")
|
587 |
+
# logging.error(traceback.format_exc())
|
588 |
+
# return "Sorry, I encountered an error while processing your request.", []
|
589 |
|
590 |
+
def generate_answer(message, choice, retrieval_mode, selected_model):
|
591 |
+
# Logic for Phi-3.5
|
592 |
+
if selected_model == phi_pipe: # LM-2 Phi-3.5 selected
|
593 |
+
retriever = phi_retriever
|
594 |
+
context_documents = retriever.get_relevant_documents(message)
|
595 |
+
context = "\n".join([doc.page_content for doc in context_documents])
|
596 |
+
|
597 |
+
# Use the correct template for Phi-3.5
|
598 |
+
prompt = phi_custom_template.format(context=context, question=message)
|
599 |
+
|
600 |
+
response = selected_model(prompt, **{
|
601 |
+
"max_new_tokens": 400,
|
602 |
+
"return_full_text": True,
|
603 |
+
"temperature": 0.7,
|
604 |
+
"do_sample": True,
|
605 |
+
})
|
606 |
+
|
607 |
+
if response:
|
608 |
+
generated_text = response[0]['generated_text']
|
609 |
+
cleaned_response = clean_response(generated_text)
|
610 |
+
return cleaned_response, extract_addresses(cleaned_response)
|
611 |
+
else:
|
612 |
+
return "No response generated.", []
|
613 |
|
614 |
|
615 |
|
|
|
1095 |
|
1096 |
|
1097 |
|
1098 |
+
# def handle_model_choice_change(selected_model):
|
1099 |
+
# if selected_model == "LM-2":
|
1100 |
+
# # Disable retrieval mode and select style when LM-2 is selected
|
1101 |
+
# return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
1102 |
+
# elif selected_model == "LM-1":
|
1103 |
+
# # Enable retrieval mode and select style for LM-1
|
1104 |
+
# return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1105 |
+
# else:
|
1106 |
+
# # Default case: allow interaction
|
1107 |
+
# return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1108 |
+
|
1109 |
def handle_model_choice_change(selected_model):
|
1110 |
+
if selected_model == "LM-2": # When LM-2 (Phi-3.5) is selected
|
1111 |
# Disable retrieval mode and select style when LM-2 is selected
|
1112 |
+
return (
|
1113 |
+
gr.update(interactive=False), # Disable retrieval mode
|
1114 |
+
gr.update(interactive=False), # Disable style (Details/Conversational)
|
1115 |
+
gr.update(interactive=False) # Disable the model choice itself
|
1116 |
+
)
|
1117 |
else:
|
1118 |
+
# Disable GPT-4o, GPT-4o-mini, and KGF, only Phi-3.5 works
|
1119 |
+
return (
|
1120 |
+
gr.update(interactive=True), # Allow retrieval mode for other models
|
1121 |
+
gr.update(interactive=True), # Allow style options for other models
|
1122 |
+
gr.update(interactive=True) # Allow other models to be selected
|
1123 |
+
)
|
1124 |
|
1125 |
#Flux Coding
|
1126 |
|
|
|
1380 |
state = gr.State()
|
1381 |
|
1382 |
chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
|
1383 |
+
choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational",interactive=False,visible=False)
|
1384 |
+
retrieval_mode = gr.Radio(label="Retrieval Mode", choices=["VDB", "KGF"], value="VDB",interactive=False,visible=False)
|
1385 |
+
model_choice = gr.Dropdown(label="Choose Model", choices=["LM-2"], value="LM-2")
|
1386 |
|
1387 |
# Link the dropdown change to handle_model_choice_change
|
1388 |
model_choice.change(fn=handle_model_choice_change, inputs=model_choice, outputs=[retrieval_mode, choice, choice])
|