Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import argparse | |
import pandas as pd | |
# !pip install python-Levenshtein | |
from Levenshtein import distance | |
import sys | |
sys.path.append('../') | |
from utilities import * | |
def get_most_similar(prediction, choices): | |
""" | |
Use the Levenshtein distance (or edit distance) to determine which of the choices is most similar to the given prediction | |
""" | |
distances = [distance(prediction, choice) for choice in choices] | |
ind = distances.index(min(distances)) | |
return choices[ind] | |
# return min(choices, key=lambda choice: distance(prediction, choice)) | |
def normalize_extracted_answer(extraction, choices, question_type, answer_type, precision): | |
""" | |
Normalize the extracted answer to match the answer type | |
""" | |
if question_type == 'multi_choice': | |
# make sure the extraction is a string | |
if isinstance(extraction, str): | |
extraction = extraction.strip() | |
else: | |
try: | |
extraction = str(extraction) | |
except: | |
extraction = "" | |
# extract "A" from "(A) text" | |
letter = re.findall(r'\(([a-zA-Z])\)', extraction) | |
if len(letter) > 0: | |
extraction = letter[0].upper() | |
options = [chr(ord('A') + i) for i in range(len(choices))] | |
if extraction in options: | |
# convert option letter to text, e.g. "A" -> "text" | |
ind = options.index(extraction) | |
extraction = choices[ind] | |
else: | |
# select the most similar option | |
extraction = get_most_similar(extraction, choices) | |
assert extraction in choices | |
elif answer_type == 'integer': | |
try: | |
extraction = str(int(float(extraction))) | |
except: | |
extraction = None | |
elif answer_type == 'float': | |
try: | |
extraction = str(round(float(extraction), precision)) | |
except: | |
extraction = None | |
elif answer_type == 'list': | |
try: | |
extraction = str(extraction) | |
except: | |
extraction = None | |
return extraction | |
def safe_equal(prediction, answer): | |
""" | |
Check if the prediction is equal to the answer, even if they are of different types | |
""" | |
try: | |
if prediction == answer: | |
return True | |
return False | |
except Exception as e: | |
print(e) | |
return False | |
def get_acc_with_contion(res_pd, key, value): | |
if key == 'skills': | |
# if value in res_pd[key]: | |
total_pd = res_pd[res_pd[key].apply(lambda x: value in x)] | |
else: | |
total_pd = res_pd[res_pd[key] == value] | |
correct_pd = total_pd[total_pd['true_false'] == True] | |
acc = "{:.2f}".format(len(correct_pd) / len(total_pd) * 100) | |
return len(correct_pd), len(total_pd), acc | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_dir', type=str, default='../results') | |
parser.add_argument('--output_file', type=str, default='output.json') | |
parser.add_argument('--score_file', type=str, default='scores.json') | |
parser.add_argument('--gt_file', type=str, default='../data/testmini.json', help='ground truth file') | |
parser.add_argument('--number', type=int, default=-1, help='number of problems to run') | |
parser.add_argument('--rerun', action='store_true', help='rerun the evaluation') | |
parser.add_argument('--caculate_gain', action='store_true', help='caculate the socre gains over random guess') | |
parser.add_argument('--random_file', type=str, default='score_random_guess.json') | |
args = parser.parse_args() | |
# args | |
output_file = os.path.join(args.output_dir, args.output_file) | |
# # quick test | |
# output_file = '../results/llava-llama-2-13b/output_llava_llama_2_13b.json' | |
# read json | |
print(f"Reading {output_file}...") | |
results = read_json(output_file) | |
# read ground truth | |
print(f"Reading {args.gt_file}...") | |
gts = read_json(args.gt_file) | |
# full pids | |
full_pids = list(results.keys()) | |
if args.number > 0: | |
full_pids = full_pids[:min(args.number, len(full_pids))] | |
print("Number of testing problems:", len(full_pids)) | |
## [1] Evaluate if the prediction is true or false | |
print("\nEvaluating the predictions...") | |
update_json_flag = False | |
for pid in full_pids: | |
problem = results[pid] | |
# print(problem) | |
if args.rerun: | |
if 'prediction' in problem: | |
del problem['prediction'] | |
if 'true_false' in problem: | |
del problem['true_false'] | |
choices = problem['choices'] | |
question_type = problem['question_type'] | |
answer_type = problem['answer_type'] | |
precision = problem['precision'] | |
extraction = problem['extraction'] | |
if 'answer' in problem: | |
answer = problem['answer'] | |
else: | |
answer = gts[pid]['answer'] | |
problem['answer'] = answer | |
# normalize the extracted answer to match the answer type | |
prediction = normalize_extracted_answer(extraction, choices, question_type, answer_type, precision) | |
# verify the prediction is true or false | |
true_false = safe_equal(prediction, answer) | |
# update the problem | |
if "true_false" not in problem: | |
update_json_flag = True | |
elif true_false != problem['true_false']: | |
update_json_flag = True | |
if "prediction" not in problem: | |
update_json_flag = True | |
elif prediction != problem['prediction']: | |
update_json_flag = True | |
problem['prediction'] = prediction | |
problem['true_false'] = true_false | |
# save the updated json | |
if update_json_flag: | |
print("\n!!!Some problems are updated.!!!") | |
print(f"\nSaving {output_file}...") | |
save_json(results, output_file) | |
## [2] Calculate the average accuracy | |
total = len(full_pids) | |
correct = 0 | |
for pid in full_pids: | |
if results[pid]['true_false']: | |
correct += 1 | |
accuracy = str(round(correct / total * 100, 2)) | |
print(f"\nCorrect: {correct}, Total: {total}, Accuracy: {accuracy}%") | |
scores = {"average": {"accuracy": accuracy, "correct": correct, "total": total}} | |
## [3] Calculate the fine-grained accuracy scores | |
# merge the 'metadata' attribute into the data | |
for pid in results: | |
results[pid].update(results[pid].pop('metadata')) | |
# convert the data to a pandas DataFrame | |
df = pd.DataFrame(results).T | |
print(len(df)) | |
print("Number of test problems:", len(df)) | |
# assert len(df) == 1000 # Important!!! | |
# asign the target keys for evaluation | |
target_keys = ['question_type', 'answer_type', 'language', 'source', 'category', 'task', 'context', 'grade', 'skills'] | |
for key in target_keys: | |
print(f"\nType: [{key}]") | |
# get the unique values of the key | |
if key == 'skills': | |
# the value is a list | |
values = [] | |
for i in range(len(df)): | |
values += df[key][i] | |
values = list(set(values)) | |
else: | |
values = df[key].unique() | |
#print(values) | |
# calculate the accuracy for each value | |
scores[key] = {} | |
for value in values: | |
correct, total, acc = get_acc_with_contion(df, key, value) | |
if total > 0: | |
print(f"[{value}]: {acc}% ({correct}/{total})") | |
scores[key][value] = {"accuracy": acc, "correct": correct, "total": total} | |
# sort the scores by accuracy | |
scores[key] = dict(sorted(scores[key].items(), key=lambda item: float(item[1]['accuracy']), reverse=True)) | |
# save the scores | |
scores_file = os.path.join(args.output_dir, args.score_file) | |
print(f"\nSaving {scores_file}...") | |
save_json(scores, scores_file) | |
print("\nDone!") | |
# [4] Calculate the score gains over random guess | |
if args.caculate_gain: | |
random_file = os.path.join(args.output_dir, args.random_file) | |
random_scores = json.load(open(random_file)) | |
print("\nCalculating the score gains...") | |
for key in scores: | |
if key == 'average': | |
gain = round(float(scores[key]['accuracy']) - float(random_scores[key]['accuracy']), 2) | |
scores[key]['acc_gain'] = gain | |
else: | |
for sub_key in scores[key]: | |
gain = round(float(scores[key][sub_key]['accuracy']) - float(random_scores[key][sub_key]['accuracy']), 2) | |
scores[key][sub_key]['acc_gain'] = str(gain) | |
# save the score gains | |
print(f"\nSaving {scores_file}...") | |
save_json(scores, scores_file) | |
print("\nDone!") |