Spaces:
Runtime error
Runtime error
File size: 19,777 Bytes
fbc77ac a6247a2 fbc77ac a6247a2 fbc77ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import streamlit as st
# Install mediapipe
#!pip install mediapipe
# *******Import necessary libraries***************
import math
import cv2
import numpy as np
from time import time
import mediapipe as mp
import matplotlib.pyplot as plt
from PIL import Image
from transformers import pipeline
#*******************Initialize the Pose Detection Model*****************
# Initializing mediapipe pose class.
mp_pose = mp.solutions.pose
# Setting up the Pose function.
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.3, model_complexity=2)
# Initializing mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils
#*********Read an Image************************
# !pip install requests
# import requests
# # Function to read an image from a URL
#def read_image_from_url(url1):
# response = requests.get(url1)
# image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
# image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
# return image
# # GitHub URL of the image
# url1 = 'https://github.com/toanmolsharma/newprojecty/raw/main/media/sample.jpg'
# # Read the image from the URL
# sample_img = read_image_from_url(url1)
# # Read an image from the specified path.
# #sample_img = cv2.imread('media/sample.jpg')
# # Specify a size of the figure.
# plt.figure(figsize = [10, 10])
# # Display the sample image, also convert BGR to RGB for display.
#plt.title("Sample Image");plt.axis('off');plt.imshow(sample_img[:,:,::-1]);plt.show()
#*********************Pose Detection On Real-Time Webcam Feed/Video******
## Setup Pose function for video.
#pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
## Initialize the VideoCapture object to read from the webcam.
#video = cv2.VideoCapture(1)
## Create named window for resizing purposes
#cv2.namedWindow('Pose Detection', cv2.WINDOW_NORMAL)
## Initialize the VideoCapture object to read from a video stored in the disk.
##video = cv2.VideoCapture('media/running.mp4')
## Set video camera size
#video.set(3,1280)
#video.set(4,960)
## Initialize a variable to store the time of the previous frame.
#time1 = 0
## Iterate until the video is accessed successfully.
#while video.isOpened():
# # Read a frame.
# ok, frame = video.read()
# # Check if frame is not read properly.
# if not ok:
# # Break the loop.
# break
# # Flip the frame horizontally for natural (selfie-view) visualization.
# frame = cv2.flip(frame, 1)
# # Get the width and height of the frame
# frame_height, frame_width, _ = frame.shape
# # Resize the frame while keeping the aspect ratio.
# frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# # Perform Pose landmark detection.
#frame, _ = detectPose(frame, pose_video, display=False)
## Set the time for this frame to the current time.
##time2 = time()
# #Check if the difference between the previous and this frame time > 0 to avoid division by zero.
#if (time2 - time1) > 0:
# # Calculate the number of frames per second.
# frames_per_second = 1.0 / (time2 - time1)
# # Write the calculated number of frames per second on the frame.
#cv2.putText(frame, 'FPS: {}'.format(int(frames_per_second)), (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 3)
## Update the previous frame time to this frame time.
## As this frame will become previous frame in next iteration.
#time1 = time2
## Display the frame.
#cv2.imshow('Pose Detection', frame)
# # Wait until a key is pressed.
# # Retreive the ASCII code of the key pressed
# k = cv2.waitKey(1) & 0xFF
# # Check if 'ESC' is pressed.
#if(k == 27):
# # Break the loop.
# break
## Release the VideoCapture object.
#video.release()
## Close the windows.
#cv2.destroyAllWindows()
#************************Create a Pose Detection Function*******************
def detectPose(image, pose, display=True):
'''
This function performs pose detection on an image.
Args:
image: The input image with a prominent person whose pose landmarks needs to be detected.
pose: The pose setup function required to perform the pose detection.
display: A boolean value that is if set to true the function displays the original input image, the resultant image,
and the pose landmarks in 3D plot and returns nothing.
Returns:
output_image: The input image with the detected pose landmarks drawn.
landmarks: A list of detected landmarks converted into their original scale.
'''
# Create a copy of the input image.
output_image = image.copy()
# Convert the image from BGR into RGB format.
imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Perform the Pose Detection.
results = pose.process(imageRGB)
# Retrieve the height and width of the input image.
height, width, _ = image.shape
# Initialize a list to store the detected landmarks.
landmarks = []
# Check if any landmarks are detected.
if results.pose_landmarks:
# Draw Pose landmarks on the output image.
mp_drawing.draw_landmarks(image=output_image, landmark_list=results.pose_landmarks,
connections=mp_pose.POSE_CONNECTIONS)
# Iterate over the detected landmarks.
for landmark in results.pose_landmarks.landmark:
# Append the landmark into the list.
landmarks.append((int(landmark.x * width), int(landmark.y * height),
(landmark.z * width)))
# Check if the original input image and the resultant image are specified to be displayed.
if display:
# Display the original input image and the resultant image.
plt.figure(figsize=[22,22])
plt.subplot(121);plt.imshow(image[:,:,::-1]);plt.title("Original Image");plt.axis('off');
plt.subplot(122);plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
# Also Plot the Pose landmarks in 3D.
mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
# Otherwise
else:
# Return the output image and the found landmarks.
return output_image, landmarks
# ********************Pose Classification with Angle Heuristics*****************
def calculateAngle(landmark1, landmark2, landmark3):
'''
This function calculates angle between three different landmarks.
Args:
landmark1: The first landmark containing the x,y and z coordinates.
landmark2: The second landmark containing the x,y and z coordinates.
landmark3: The third landmark containing the x,y and z coordinates.
Returns:
angle: The calculated angle between the three landmarks.
'''
# Get the required landmarks coordinates.
x1, y1, _ = landmark1
x2, y2, _ = landmark2
x3, y3, _ = landmark3
# Calculate the angle between the three points
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
# Check if the angle is less than zero.
if angle < 0:
# Add 360 to the found angle.
angle += 360
# Return the calculated angle.
return angle
#***************************Create a Function to Perform Pose Classification***************
def classifyPose(landmarks, output_image, display=False):
# Initialize the label of the pose. It is not known at this stage.
label = "Unknown Pose"
# Specify the color (Red) with which the label will be written on the image.
color = (0, 0, 255)
# Calculate the required angles.
#----------------------------------------------------------------------------------------------------------------
# Get the angle between the left shoulder, elbow and wrist points.
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
# Get the angle between the right shoulder, elbow and wrist points.
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
# Get the angle between the left elbow, shoulder and hip points.
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
# Get the angle between the right hip, shoulder and elbow points.
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
# Get the angle between the left hip, knee and ankle points.
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right hip, knee and ankle points
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
#----------------------------------------------------------------------------------------------------------------
# Check for Five-Pointed Star Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][1]) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][1]) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) > 200 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0]) > 200:
label = "Five-Pointed Star Pose"
# Check if it is the warrior II pose or the T pose.
# As for both of them, both arms should be straight and shoulders should be at the specific angle.
#----------------------------------------------------------------------------------------------------------------
# Check if the both arms are straight.
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:
# Check if shoulders are at the required angle.
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:
# Check if it is the warrior II pose.
#----------------------------------------------------------------------------------------------------------------
# Check if one leg is straight.
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
# Check if the other leg is bended at the required angle.
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:
# Specify the label of the pose that is Warrior II pose.
label = 'Warrior II Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if it is the T pose.
#----------------------------------------------------------------------------------------------------------------
# Check if both legs are straight
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:
# Specify the label of the pose that is tree pose.
label = 'T Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if it is the tree pose.
#----------------------------------------------------------------------------------------------------------------
# Check if one leg is straight
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
# Check if the other leg is bended at the required angle.
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:
# Specify the label of the pose that is tree pose.
label = 'Tree Pose'
# Check for Upward Salute Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][0]) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][0]) < 100 and \
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1] and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1]) < 50:
label = "Upward Salute Pose"
# Check for Hands Under Feet Pose
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value][1] and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value][1] and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0]) < 50 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) < 50:
label = "Hands Under Feet Pose"
#----------------------------------------------------------------------------------------------------------------
# Check if the pose is classified successfully
if label != 'Unknown Pose':
# Update the color (to green) with which the label will be written on the image.
color = (0, 255, 0)
# Write the label on the output image.
cv2.putText(output_image, label, (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
# Check if the resultant image is specified to be displayed.
if display:
# Display the resultant image.
plt.figure(figsize=[10,10])
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
else:
# Return the output image and the classified label.
return output_image, label
#******************************Pose Classification On Real-Time Webcam Feed*****************
'''
# Setup Pose function for video.
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
# Initialize the VideoCapture object to read from the webcam.
camera_video = cv2.VideoCapture(0)
camera_video.set(3,1280)
camera_video.set(4,960)
# Initialize a resizable window.
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
# Iterate until the webcam is accessed successfully.
while camera_video.isOpened():
# Read a frame.
ok, frame = camera_video.read()
# Check if frame is not read properly.
if not ok:
# Continue to the next iteration to read the next frame and ignore the empty camera frame.
continue
# Flip the frame horizontally for natural (selfie-view) visualization.
frame = cv2.flip(frame, 1)
# Get the width and height of the frame
frame_height, frame_width, _ = frame.shape
# Resize the frame while keeping the aspect ratio.
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# Perform Pose landmark detection.
frame, landmarks = detectPose(frame, pose_video, display=False)
# Check if the landmarks are detected.
if landmarks:
# Perform the Pose Classification.
frame, _ = classifyPose(landmarks, frame, display=False)
# Display the frame.
cv2.imshow('Pose Classification', frame)
# Wait until a key is pressed.
# Retreive the ASCII code of the key pressed
k = cv2.waitKey(1) & 0xFF
# Check if 'ESC' is pressed.
if(k == 27):
# Break the loop.
break
# Release the VideoCapture object and close the windows.
camera_video.release()
cv2.destroyAllWindows()
# Create a Gradio interface
iface = gr.Interface(
fn=detect_yoga_poses,
inputs=None,
outputs=None,
title="Live Yoga Pose Detection",
description="This app detects yoga poses from the live camera feed using MediaPipe.",
)
'''
#import streamlit as st
#import cv2
#import numpy as np
#from PIL import Image
#from transformers import pipeline
# Function to load model from Hugging Face
@st.cache(allow_output_mutation=True)
def load_model():
return pipeline("pose-detection", device=0) # Adjust device as per your requirement
# Function to detect yoga pose from image
def detect_yoga_pose(image):
# Convert PIL image to OpenCV format
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Your pose detection logic here
# Replace the following line with your actual pose detection code
return "Detected yoga pose: Warrior II"
def main():
st.title("Yoga Pose Detection from Live Camera Feed")
# Load the model
model = load_model()
# Setup Pose function for video.
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
# Accessing web cam : Initialize the VideoCapture object to read from the webcam.
camera_video = cv2.VideoCapture(0)
camera_video.set(3,1280)
camera_video.set(4,960)
# Initialize a resizable window.
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
# Iterate until the webcam is accessed successfully.
while camera_video.isOpened():
# Read a frame.
ok, frame = camera_video.read()
# Check if frame is not read properly.
if not ok:
# Continue to the next iteration to read the next frame and ignore the empty camera frame.
continue
# Flip the frame horizontally for natural (selfie-view) visualization.
frame = cv2.flip(frame, 1)
# Get the width and height of the frame
frame_height, frame_width, _ = frame.shape
# Resize the frame while keeping the aspect ratio.
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# Perform Pose landmark detection.
frame, landmarks = detectPose(frame, pose_video, display=False)
# Check if the landmarks are detected.
if landmarks:
# Perform the Pose Classification.
frame, _ = classifyPose(landmarks, frame, display=False)
# Display the frame.
cv2.imshow('Pose Classification', frame)
# Wait until a key is pressed.
# Retreive the ASCII code of the key pressed
k = cv2.waitKey(1) & 0xFF
# Check if 'ESC' is pressed.
if(k == 27):
# Break the loop.
break
# Release the VideoCapture object, close Streamlit app and close the windows.
camera_video.release()
st.stop()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()
|