File size: 19,777 Bytes
fbc77ac
a6247a2
fbc77ac
 
 
 
 
 
 
 
 
 
 
a6247a2
fbc77ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import streamlit as st

# Install mediapipe
#!pip install mediapipe

# *******Import necessary libraries***************
import math
import cv2
import numpy as np
from time import time
import mediapipe as mp
import matplotlib.pyplot as plt
from PIL import Image
from transformers import pipeline
#*******************Initialize the Pose Detection Model*****************

# Initializing mediapipe pose class.
mp_pose = mp.solutions.pose

# Setting up the Pose function.
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.3, model_complexity=2)

# Initializing mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils

#*********Read an Image************************

# !pip install requests
# import requests
# # Function to read an image from a URL
#def read_image_from_url(url1):
#   response = requests.get(url1)
#   image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
#   image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
#   return image

#   # GitHub URL of the image
# url1 = 'https://github.com/toanmolsharma/newprojecty/raw/main/media/sample.jpg'

# # Read the image from the URL
# sample_img = read_image_from_url(url1)

# # Read an image from the specified path.
# #sample_img = cv2.imread('media/sample.jpg')

# # Specify a size of the figure.
# plt.figure(figsize = [10, 10])

# # Display the sample image, also convert BGR to RGB for display.
#plt.title("Sample Image");plt.axis('off');plt.imshow(sample_img[:,:,::-1]);plt.show()



#*********************Pose Detection On Real-Time Webcam Feed/Video******

## Setup Pose function for video.
#pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)

## Initialize the VideoCapture object to read from the webcam.
#video = cv2.VideoCapture(1)

## Create named window for resizing purposes
#cv2.namedWindow('Pose Detection', cv2.WINDOW_NORMAL)


## Initialize the VideoCapture object to read from a video stored in the disk.
##video = cv2.VideoCapture('media/running.mp4')

## Set video camera size
#video.set(3,1280)
#video.set(4,960)

## Initialize a variable to store the time of the previous frame.
#time1 = 0

## Iterate until the video is accessed successfully.
#while video.isOpened():

  #  # Read a frame.
 #   ok, frame = video.read()

  #  # Check if frame is not read properly.
 #   if not ok:

  #      # Break the loop.
  #      break

  #  # Flip the frame horizontally for natural (selfie-view) visualization.
  #  frame = cv2.flip(frame, 1)

   # # Get the width and height of the frame
   # frame_height, frame_width, _ =  frame.shape

   # # Resize the frame while keeping the aspect ratio.
   # frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))

   # # Perform Pose landmark detection.
    #frame, _ = detectPose(frame, pose_video, display=False)

    ## Set the time for this frame to the current time.
    ##time2 = time()

    # #Check if the difference between the previous and this frame time > 0 to avoid division by zero.
    #if (time2 - time1) > 0:

     #   # Calculate the number of frames per second.
      #  frames_per_second = 1.0 / (time2 - time1)

       # # Write the calculated number of frames per second on the frame.
        #cv2.putText(frame, 'FPS: {}'.format(int(frames_per_second)), (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 3)

    ## Update the previous frame time to this frame time.
    ## As this frame will become previous frame in next iteration.
    #time1 = time2

    ## Display the frame.
    #cv2.imshow('Pose Detection', frame)

   # # Wait until a key is pressed.
   # # Retreive the ASCII code of the key pressed
   # k = cv2.waitKey(1) & 0xFF

   # # Check if 'ESC' is pressed.
    #if(k == 27):

    #    # Break the loop.
    #    break

## Release the VideoCapture object.
#video.release()

## Close the windows.
#cv2.destroyAllWindows()


#************************Create a Pose Detection Function*******************
def detectPose(image, pose, display=True):
    '''
    This function performs pose detection on an image.
    Args:
        image: The input image with a prominent person whose pose landmarks needs to be detected.
        pose: The pose setup function required to perform the pose detection.
        display: A boolean value that is if set to true the function displays the original input image, the resultant image,
                 and the pose landmarks in 3D plot and returns nothing.
    Returns:
        output_image: The input image with the detected pose landmarks drawn.
        landmarks: A list of detected landmarks converted into their original scale.
    '''

    # Create a copy of the input image.
    output_image = image.copy()

    # Convert the image from BGR into RGB format.
    imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Perform the Pose Detection.
    results = pose.process(imageRGB)

    # Retrieve the height and width of the input image.
    height, width, _ = image.shape

    # Initialize a list to store the detected landmarks.
    landmarks = []

    # Check if any landmarks are detected.
    if results.pose_landmarks:

        # Draw Pose landmarks on the output image.
        mp_drawing.draw_landmarks(image=output_image, landmark_list=results.pose_landmarks,
                                  connections=mp_pose.POSE_CONNECTIONS)

        # Iterate over the detected landmarks.
        for landmark in results.pose_landmarks.landmark:

            # Append the landmark into the list.
            landmarks.append((int(landmark.x * width), int(landmark.y * height),
                                  (landmark.z * width)))

    # Check if the original input image and the resultant image are specified to be displayed.
    if display:

        # Display the original input image and the resultant image.
        plt.figure(figsize=[22,22])
        plt.subplot(121);plt.imshow(image[:,:,::-1]);plt.title("Original Image");plt.axis('off');
        plt.subplot(122);plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');

        # Also Plot the Pose landmarks in 3D.
        mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)

    # Otherwise
    else:

        # Return the output image and the found landmarks.
        return output_image, landmarks



# ********************Pose Classification with Angle Heuristics*****************

def calculateAngle(landmark1, landmark2, landmark3):
    '''
    This function calculates angle between three different landmarks.
    Args:
        landmark1: The first landmark containing the x,y and z coordinates.
        landmark2: The second landmark containing the x,y and z coordinates.
        landmark3: The third landmark containing the x,y and z coordinates.
    Returns:
        angle: The calculated angle between the three landmarks.
    '''

    # Get the required landmarks coordinates.
    x1, y1, _ = landmark1
    x2, y2, _ = landmark2
    x3, y3, _ = landmark3

    # Calculate the angle between the three points
    angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))

    # Check if the angle is less than zero.
    if angle < 0:

        # Add 360 to the found angle.
        angle += 360

    # Return the calculated angle.
    return angle


    
#***************************Create a Function to Perform Pose Classification***************

def classifyPose(landmarks, output_image, display=False):
    
    # Initialize the label of the pose. It is not known at this stage.
    label = "Unknown Pose"

    # Specify the color (Red) with which the label will be written on the image.
    color = (0, 0, 255)

    # Calculate the required angles.
    #----------------------------------------------------------------------------------------------------------------

    # Get the angle between the left shoulder, elbow and wrist points.
    left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
                                      landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
                                      landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])

    # Get the angle between the right shoulder, elbow and wrist points.
    right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
                                       landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
                                       landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])

    # Get the angle between the left elbow, shoulder and hip points.
    left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
                                         landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
                                         landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])

    # Get the angle between the right hip, shoulder and elbow points.
    right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
                                          landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
                                          landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])

    # Get the angle between the left hip, knee and ankle points.
    left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
                                     landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
                                     landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])

    # Get the angle between the right hip, knee and ankle points
    right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
                                      landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
                                      landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])

    #----------------------------------------------------------------------------------------------------------------
    # Check for Five-Pointed Star Pose
    if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][1]) < 100 and \
       abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][1]) < 100 and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) > 200 and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0]) > 200:
        label = "Five-Pointed Star Pose"  
        
    # Check if it is the warrior II pose or the T pose.
    # As for both of them, both arms should be straight and shoulders should be at the specific angle.
    #----------------------------------------------------------------------------------------------------------------

    # Check if the both arms are straight.
    if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:

        # Check if shoulders are at the required angle.
        if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:

    # Check if it is the warrior II pose.
    #----------------------------------------------------------------------------------------------------------------

            # Check if one leg is straight.
            if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:

                # Check if the other leg is bended at the required angle.
                if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:

                    # Specify the label of the pose that is Warrior II pose.
                    label = 'Warrior II Pose'

    #----------------------------------------------------------------------------------------------------------------

    # Check if it is the T pose.
    #----------------------------------------------------------------------------------------------------------------

            # Check if both legs are straight
            if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:

                # Specify the label of the pose that is tree pose.
                label = 'T Pose'
    
    #----------------------------------------------------------------------------------------------------------------

    # Check if it is the tree pose.
    #----------------------------------------------------------------------------------------------------------------

    # Check if one leg is straight
    if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:

        # Check if the other leg is bended at the required angle.
        if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:

            # Specify the label of the pose that is tree pose.
            label = 'Tree Pose'
    
    # Check for Upward Salute Pose
    if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][0]) < 100 and \
       abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][0]) < 100 and \
       landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] and \
       landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1] and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1]) < 50:
        label = "Upward Salute Pose"

   # Check for Hands Under Feet Pose
    if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value][1] and \
       landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value][1] and \
       abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0]) < 50 and \
       abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) < 50:
        label = "Hands Under Feet Pose"      
        
       
    #----------------------------------------------------------------------------------------------------------------

    # Check if the pose is classified successfully
    if label != 'Unknown Pose':

        # Update the color (to green) with which the label will be written on the image.
        color = (0, 255, 0)

    # Write the label on the output image.
    cv2.putText(output_image, label, (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)

    # Check if the resultant image is specified to be displayed.
    if display:

        # Display the resultant image.
        plt.figure(figsize=[10,10])
        plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');

    else:

        # Return the output image and the classified label.
        return output_image, label

#******************************Pose Classification On Real-Time Webcam Feed*****************
'''
# Setup Pose function for video.
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)

# Initialize the VideoCapture object to read from the webcam.
camera_video = cv2.VideoCapture(0)
camera_video.set(3,1280)
camera_video.set(4,960)

# Initialize a resizable window.
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
 
# Iterate until the webcam is accessed successfully.
while camera_video.isOpened():

    # Read a frame.
    ok, frame = camera_video.read()

    # Check if frame is not read properly.
    if not ok:

        # Continue to the next iteration to read the next frame and ignore the empty camera frame.
        continue

    # Flip the frame horizontally for natural (selfie-view) visualization.
    frame = cv2.flip(frame, 1)

    # Get the width and height of the frame
    frame_height, frame_width, _ =  frame.shape

    # Resize the frame while keeping the aspect ratio.
    frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))

    # Perform Pose landmark detection.
    frame, landmarks = detectPose(frame, pose_video, display=False)

    # Check if the landmarks are detected.
    if landmarks:

        # Perform the Pose Classification.
        frame, _ = classifyPose(landmarks, frame, display=False)

    # Display the frame.
    cv2.imshow('Pose Classification', frame)

    # Wait until a key is pressed.
    # Retreive the ASCII code of the key pressed
    k = cv2.waitKey(1) & 0xFF

    # Check if 'ESC' is pressed.
    if(k == 27):

        # Break the loop.
        break

# Release the VideoCapture object and close the windows.
camera_video.release()
cv2.destroyAllWindows()


# Create a Gradio interface
iface = gr.Interface(
    fn=detect_yoga_poses,
    inputs=None,
    outputs=None,
    title="Live Yoga Pose Detection",
    description="This app detects yoga poses from the live camera feed using MediaPipe.",
)
'''

#import streamlit as st
#import cv2
#import numpy as np
#from PIL import Image
#from transformers import pipeline

# Function to load model from Hugging Face
@st.cache(allow_output_mutation=True)
def load_model():
    return pipeline("pose-detection", device=0)  # Adjust device as per your requirement

# Function to detect yoga pose from image
def detect_yoga_pose(image):
    # Convert PIL image to OpenCV format
    cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    # Your pose detection logic here
    # Replace the following line with your actual pose detection code
    return "Detected yoga pose: Warrior II"

def main():
    st.title("Yoga Pose Detection from Live Camera Feed")

    # Load the model
    model = load_model()

   
    

# Setup Pose function for video.
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)

# Accessing web cam : Initialize the VideoCapture object to read from the webcam.
camera_video = cv2.VideoCapture(0)
camera_video.set(3,1280)
camera_video.set(4,960)

# Initialize a resizable window.
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)

# Iterate until the webcam is accessed successfully.
while camera_video.isOpened():

    # Read a frame.
    ok, frame = camera_video.read()

    # Check if frame is not read properly.
    if not ok:

        # Continue to the next iteration to read the next frame and ignore the empty camera frame.
        continue

    # Flip the frame horizontally for natural (selfie-view) visualization.
    frame = cv2.flip(frame, 1)

    # Get the width and height of the frame
    frame_height, frame_width, _ =  frame.shape

    # Resize the frame while keeping the aspect ratio.
    frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))

    # Perform Pose landmark detection.
    frame, landmarks = detectPose(frame, pose_video, display=False)

    # Check if the landmarks are detected.
    if landmarks:

        # Perform the Pose Classification.
        frame, _ = classifyPose(landmarks, frame, display=False)

    # Display the frame.
    cv2.imshow('Pose Classification', frame)

    # Wait until a key is pressed.
    # Retreive the ASCII code of the key pressed
    k = cv2.waitKey(1) & 0xFF

    # Check if 'ESC' is pressed.
    if(k == 27):

        # Break the loop.
        break

# Release the VideoCapture object, close Streamlit app and close the windows.
camera_video.release()
st.stop()
cv2.destroyAllWindows()

if __name__ == "__main__":
    main()