BSuruchi's picture
Update app.py
a6247a2 verified
import streamlit as st
# Install mediapipe
#!pip install mediapipe
# *******Import necessary libraries***************
import math
import cv2
import numpy as np
from time import time
import mediapipe as mp
import matplotlib.pyplot as plt
from PIL import Image
from transformers import pipeline
#*******************Initialize the Pose Detection Model*****************
# Initializing mediapipe pose class.
mp_pose = mp.solutions.pose
# Setting up the Pose function.
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.3, model_complexity=2)
# Initializing mediapipe drawing class, useful for annotation.
mp_drawing = mp.solutions.drawing_utils
#*********Read an Image************************
# !pip install requests
# import requests
# # Function to read an image from a URL
#def read_image_from_url(url1):
# response = requests.get(url1)
# image_array = np.asarray(bytearray(response.content), dtype=np.uint8)
# image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
# return image
# # GitHub URL of the image
# url1 = 'https://github.com/toanmolsharma/newprojecty/raw/main/media/sample.jpg'
# # Read the image from the URL
# sample_img = read_image_from_url(url1)
# # Read an image from the specified path.
# #sample_img = cv2.imread('media/sample.jpg')
# # Specify a size of the figure.
# plt.figure(figsize = [10, 10])
# # Display the sample image, also convert BGR to RGB for display.
#plt.title("Sample Image");plt.axis('off');plt.imshow(sample_img[:,:,::-1]);plt.show()
#*********************Pose Detection On Real-Time Webcam Feed/Video******
## Setup Pose function for video.
#pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
## Initialize the VideoCapture object to read from the webcam.
#video = cv2.VideoCapture(1)
## Create named window for resizing purposes
#cv2.namedWindow('Pose Detection', cv2.WINDOW_NORMAL)
## Initialize the VideoCapture object to read from a video stored in the disk.
##video = cv2.VideoCapture('media/running.mp4')
## Set video camera size
#video.set(3,1280)
#video.set(4,960)
## Initialize a variable to store the time of the previous frame.
#time1 = 0
## Iterate until the video is accessed successfully.
#while video.isOpened():
# # Read a frame.
# ok, frame = video.read()
# # Check if frame is not read properly.
# if not ok:
# # Break the loop.
# break
# # Flip the frame horizontally for natural (selfie-view) visualization.
# frame = cv2.flip(frame, 1)
# # Get the width and height of the frame
# frame_height, frame_width, _ = frame.shape
# # Resize the frame while keeping the aspect ratio.
# frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# # Perform Pose landmark detection.
#frame, _ = detectPose(frame, pose_video, display=False)
## Set the time for this frame to the current time.
##time2 = time()
# #Check if the difference between the previous and this frame time > 0 to avoid division by zero.
#if (time2 - time1) > 0:
# # Calculate the number of frames per second.
# frames_per_second = 1.0 / (time2 - time1)
# # Write the calculated number of frames per second on the frame.
#cv2.putText(frame, 'FPS: {}'.format(int(frames_per_second)), (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, (0, 255, 0), 3)
## Update the previous frame time to this frame time.
## As this frame will become previous frame in next iteration.
#time1 = time2
## Display the frame.
#cv2.imshow('Pose Detection', frame)
# # Wait until a key is pressed.
# # Retreive the ASCII code of the key pressed
# k = cv2.waitKey(1) & 0xFF
# # Check if 'ESC' is pressed.
#if(k == 27):
# # Break the loop.
# break
## Release the VideoCapture object.
#video.release()
## Close the windows.
#cv2.destroyAllWindows()
#************************Create a Pose Detection Function*******************
def detectPose(image, pose, display=True):
'''
This function performs pose detection on an image.
Args:
image: The input image with a prominent person whose pose landmarks needs to be detected.
pose: The pose setup function required to perform the pose detection.
display: A boolean value that is if set to true the function displays the original input image, the resultant image,
and the pose landmarks in 3D plot and returns nothing.
Returns:
output_image: The input image with the detected pose landmarks drawn.
landmarks: A list of detected landmarks converted into their original scale.
'''
# Create a copy of the input image.
output_image = image.copy()
# Convert the image from BGR into RGB format.
imageRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Perform the Pose Detection.
results = pose.process(imageRGB)
# Retrieve the height and width of the input image.
height, width, _ = image.shape
# Initialize a list to store the detected landmarks.
landmarks = []
# Check if any landmarks are detected.
if results.pose_landmarks:
# Draw Pose landmarks on the output image.
mp_drawing.draw_landmarks(image=output_image, landmark_list=results.pose_landmarks,
connections=mp_pose.POSE_CONNECTIONS)
# Iterate over the detected landmarks.
for landmark in results.pose_landmarks.landmark:
# Append the landmark into the list.
landmarks.append((int(landmark.x * width), int(landmark.y * height),
(landmark.z * width)))
# Check if the original input image and the resultant image are specified to be displayed.
if display:
# Display the original input image and the resultant image.
plt.figure(figsize=[22,22])
plt.subplot(121);plt.imshow(image[:,:,::-1]);plt.title("Original Image");plt.axis('off');
plt.subplot(122);plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
# Also Plot the Pose landmarks in 3D.
mp_drawing.plot_landmarks(results.pose_world_landmarks, mp_pose.POSE_CONNECTIONS)
# Otherwise
else:
# Return the output image and the found landmarks.
return output_image, landmarks
# ********************Pose Classification with Angle Heuristics*****************
def calculateAngle(landmark1, landmark2, landmark3):
'''
This function calculates angle between three different landmarks.
Args:
landmark1: The first landmark containing the x,y and z coordinates.
landmark2: The second landmark containing the x,y and z coordinates.
landmark3: The third landmark containing the x,y and z coordinates.
Returns:
angle: The calculated angle between the three landmarks.
'''
# Get the required landmarks coordinates.
x1, y1, _ = landmark1
x2, y2, _ = landmark2
x3, y3, _ = landmark3
# Calculate the angle between the three points
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2))
# Check if the angle is less than zero.
if angle < 0:
# Add 360 to the found angle.
angle += 360
# Return the calculated angle.
return angle
#***************************Create a Function to Perform Pose Classification***************
def classifyPose(landmarks, output_image, display=False):
# Initialize the label of the pose. It is not known at this stage.
label = "Unknown Pose"
# Specify the color (Red) with which the label will be written on the image.
color = (0, 0, 255)
# Calculate the required angles.
#----------------------------------------------------------------------------------------------------------------
# Get the angle between the left shoulder, elbow and wrist points.
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value])
# Get the angle between the right shoulder, elbow and wrist points.
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value])
# Get the angle between the left elbow, shoulder and hip points.
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value],
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value])
# Get the angle between the right hip, shoulder and elbow points.
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value])
# Get the angle between the left hip, knee and ankle points.
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value],
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value],
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value])
# Get the angle between the right hip, knee and ankle points
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value],
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value],
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value])
#----------------------------------------------------------------------------------------------------------------
# Check for Five-Pointed Star Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][1]) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][1]) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) > 200 and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0]) > 200:
label = "Five-Pointed Star Pose"
# Check if it is the warrior II pose or the T pose.
# As for both of them, both arms should be straight and shoulders should be at the specific angle.
#----------------------------------------------------------------------------------------------------------------
# Check if the both arms are straight.
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195:
# Check if shoulders are at the required angle.
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110:
# Check if it is the warrior II pose.
#----------------------------------------------------------------------------------------------------------------
# Check if one leg is straight.
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
# Check if the other leg is bended at the required angle.
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120:
# Specify the label of the pose that is Warrior II pose.
label = 'Warrior II Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if it is the T pose.
#----------------------------------------------------------------------------------------------------------------
# Check if both legs are straight
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195:
# Specify the label of the pose that is tree pose.
label = 'T Pose'
#----------------------------------------------------------------------------------------------------------------
# Check if it is the tree pose.
#----------------------------------------------------------------------------------------------------------------
# Check if one leg is straight
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195:
# Check if the other leg is bended at the required angle.
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45:
# Specify the label of the pose that is tree pose.
label = 'Tree Pose'
# Check for Upward Salute Pose
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][0]) < 100 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][0]) < 100 and \
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1] and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1]) < 50:
label = "Upward Salute Pose"
# Check for Hands Under Feet Pose
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value][1] and \
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value][1] and \
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0]) < 50 and \
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) < 50:
label = "Hands Under Feet Pose"
#----------------------------------------------------------------------------------------------------------------
# Check if the pose is classified successfully
if label != 'Unknown Pose':
# Update the color (to green) with which the label will be written on the image.
color = (0, 255, 0)
# Write the label on the output image.
cv2.putText(output_image, label, (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2)
# Check if the resultant image is specified to be displayed.
if display:
# Display the resultant image.
plt.figure(figsize=[10,10])
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off');
else:
# Return the output image and the classified label.
return output_image, label
#******************************Pose Classification On Real-Time Webcam Feed*****************
'''
# Setup Pose function for video.
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
# Initialize the VideoCapture object to read from the webcam.
camera_video = cv2.VideoCapture(0)
camera_video.set(3,1280)
camera_video.set(4,960)
# Initialize a resizable window.
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
# Iterate until the webcam is accessed successfully.
while camera_video.isOpened():
# Read a frame.
ok, frame = camera_video.read()
# Check if frame is not read properly.
if not ok:
# Continue to the next iteration to read the next frame and ignore the empty camera frame.
continue
# Flip the frame horizontally for natural (selfie-view) visualization.
frame = cv2.flip(frame, 1)
# Get the width and height of the frame
frame_height, frame_width, _ = frame.shape
# Resize the frame while keeping the aspect ratio.
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# Perform Pose landmark detection.
frame, landmarks = detectPose(frame, pose_video, display=False)
# Check if the landmarks are detected.
if landmarks:
# Perform the Pose Classification.
frame, _ = classifyPose(landmarks, frame, display=False)
# Display the frame.
cv2.imshow('Pose Classification', frame)
# Wait until a key is pressed.
# Retreive the ASCII code of the key pressed
k = cv2.waitKey(1) & 0xFF
# Check if 'ESC' is pressed.
if(k == 27):
# Break the loop.
break
# Release the VideoCapture object and close the windows.
camera_video.release()
cv2.destroyAllWindows()
# Create a Gradio interface
iface = gr.Interface(
fn=detect_yoga_poses,
inputs=None,
outputs=None,
title="Live Yoga Pose Detection",
description="This app detects yoga poses from the live camera feed using MediaPipe.",
)
'''
#import streamlit as st
#import cv2
#import numpy as np
#from PIL import Image
#from transformers import pipeline
# Function to load model from Hugging Face
@st.cache(allow_output_mutation=True)
def load_model():
return pipeline("pose-detection", device=0) # Adjust device as per your requirement
# Function to detect yoga pose from image
def detect_yoga_pose(image):
# Convert PIL image to OpenCV format
cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Your pose detection logic here
# Replace the following line with your actual pose detection code
return "Detected yoga pose: Warrior II"
def main():
st.title("Yoga Pose Detection from Live Camera Feed")
# Load the model
model = load_model()
# Setup Pose function for video.
pose_video = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.5, model_complexity=1)
# Accessing web cam : Initialize the VideoCapture object to read from the webcam.
camera_video = cv2.VideoCapture(0)
camera_video.set(3,1280)
camera_video.set(4,960)
# Initialize a resizable window.
cv2.namedWindow('Pose Classification', cv2.WINDOW_NORMAL)
# Iterate until the webcam is accessed successfully.
while camera_video.isOpened():
# Read a frame.
ok, frame = camera_video.read()
# Check if frame is not read properly.
if not ok:
# Continue to the next iteration to read the next frame and ignore the empty camera frame.
continue
# Flip the frame horizontally for natural (selfie-view) visualization.
frame = cv2.flip(frame, 1)
# Get the width and height of the frame
frame_height, frame_width, _ = frame.shape
# Resize the frame while keeping the aspect ratio.
frame = cv2.resize(frame, (int(frame_width * (640 / frame_height)), 640))
# Perform Pose landmark detection.
frame, landmarks = detectPose(frame, pose_video, display=False)
# Check if the landmarks are detected.
if landmarks:
# Perform the Pose Classification.
frame, _ = classifyPose(landmarks, frame, display=False)
# Display the frame.
cv2.imshow('Pose Classification', frame)
# Wait until a key is pressed.
# Retreive the ASCII code of the key pressed
k = cv2.waitKey(1) & 0xFF
# Check if 'ESC' is pressed.
if(k == 27):
# Break the loop.
break
# Release the VideoCapture object, close Streamlit app and close the windows.
camera_video.release()
st.stop()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()