Spaces:
Build error
Build error
import os | |
import sys | |
from collections import deque | |
from typing import TYPE_CHECKING | |
if TYPE_CHECKING: | |
from litellm import ChatCompletionToolParam | |
from openhands.events.action import Action | |
from openhands.llm.llm import ModelResponse | |
import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling | |
from openhands.agenthub.codeact_agent.tools.bash import create_cmd_run_tool | |
from openhands.agenthub.codeact_agent.tools.browser import BrowserTool | |
from openhands.agenthub.codeact_agent.tools.finish import FinishTool | |
from openhands.agenthub.codeact_agent.tools.ipython import IPythonTool | |
from openhands.agenthub.codeact_agent.tools.llm_based_edit import LLMBasedFileEditTool | |
from openhands.agenthub.codeact_agent.tools.str_replace_editor import ( | |
create_str_replace_editor_tool, | |
) | |
from openhands.agenthub.codeact_agent.tools.think import ThinkTool | |
from openhands.controller.agent import Agent | |
from openhands.controller.state.state import State | |
from openhands.core.config import AgentConfig | |
from openhands.core.logger import openhands_logger as logger | |
from openhands.core.message import Message | |
from openhands.events.action import AgentFinishAction, MessageAction | |
from openhands.events.event import Event | |
from openhands.llm.llm import LLM | |
from openhands.llm.llm_utils import check_tools | |
from openhands.memory.condenser import Condenser | |
from openhands.memory.condenser.condenser import Condensation, View | |
from openhands.memory.conversation_memory import ConversationMemory | |
from openhands.runtime.plugins import ( | |
AgentSkillsRequirement, | |
JupyterRequirement, | |
PluginRequirement, | |
) | |
from openhands.utils.prompt import PromptManager | |
class CodeActAgent(Agent): | |
VERSION = '2.2' | |
""" | |
The Code Act Agent is a minimalist agent. | |
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step. | |
### Overview | |
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents' **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details). | |
The conceptual idea is illustrated below. At each turn, the agent can: | |
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc. | |
2. **CodeAct**: Choose to perform the task by executing code | |
- Execute any valid Linux `bash` command | |
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details. | |
 | |
""" | |
sandbox_plugins: list[PluginRequirement] = [ | |
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since | |
# AgentSkillsRequirement provides a lot of Python functions, | |
# and it needs to be initialized before Jupyter for Jupyter to use those functions. | |
AgentSkillsRequirement(), | |
JupyterRequirement(), | |
] | |
def __init__( | |
self, | |
llm: LLM, | |
config: AgentConfig, | |
) -> None: | |
"""Initializes a new instance of the CodeActAgent class. | |
Parameters: | |
- llm (LLM): The llm to be used by this agent | |
- config (AgentConfig): The configuration for this agent | |
""" | |
super().__init__(llm, config) | |
self.pending_actions: deque['Action'] = deque() | |
self.reset() | |
self.tools = self._get_tools() | |
# Create a ConversationMemory instance | |
self.conversation_memory = ConversationMemory(self.config, self.prompt_manager) | |
self.condenser = Condenser.from_config(self.config.condenser) | |
logger.debug(f'Using condenser: {type(self.condenser)}') | |
def prompt_manager(self) -> PromptManager: | |
if self._prompt_manager is None: | |
self._prompt_manager = PromptManager( | |
prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'), | |
) | |
return self._prompt_manager | |
def _get_tools(self) -> list['ChatCompletionToolParam']: | |
# For these models, we use short tool descriptions ( < 1024 tokens) | |
# to avoid hitting the OpenAI token limit for tool descriptions. | |
SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS = ['gpt-', 'o3', 'o1', 'o4'] | |
use_short_tool_desc = False | |
if self.llm is not None: | |
use_short_tool_desc = any( | |
model_substr in self.llm.config.model | |
for model_substr in SHORT_TOOL_DESCRIPTION_LLM_SUBSTRS | |
) | |
tools = [] | |
if self.config.enable_cmd: | |
tools.append(create_cmd_run_tool(use_short_description=use_short_tool_desc)) | |
if self.config.enable_think: | |
tools.append(ThinkTool) | |
if self.config.enable_finish: | |
tools.append(FinishTool) | |
if self.config.enable_browsing: | |
if sys.platform == 'win32': | |
logger.warning('Windows runtime does not support browsing yet') | |
else: | |
tools.append(BrowserTool) | |
if self.config.enable_jupyter: | |
tools.append(IPythonTool) | |
if self.config.enable_llm_editor: | |
tools.append(LLMBasedFileEditTool) | |
elif self.config.enable_editor: | |
tools.append( | |
create_str_replace_editor_tool( | |
use_short_description=use_short_tool_desc | |
) | |
) | |
return tools | |
def reset(self) -> None: | |
"""Resets the CodeAct Agent.""" | |
super().reset() | |
self.pending_actions.clear() | |
def step(self, state: State) -> 'Action': | |
"""Performs one step using the CodeAct Agent. | |
This includes gathering info on previous steps and prompting the model to make a command to execute. | |
Parameters: | |
- state (State): used to get updated info | |
Returns: | |
- CmdRunAction(command) - bash command to run | |
- IPythonRunCellAction(code) - IPython code to run | |
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task | |
- MessageAction(content) - Message action to run (e.g. ask for clarification) | |
- AgentFinishAction() - end the interaction | |
""" | |
# Continue with pending actions if any | |
if self.pending_actions: | |
return self.pending_actions.popleft() | |
# if we're done, go back | |
latest_user_message = state.get_last_user_message() | |
if latest_user_message and latest_user_message.content.strip() == '/exit': | |
return AgentFinishAction() | |
# Condense the events from the state. If we get a view we'll pass those | |
# to the conversation manager for processing, but if we get a condensation | |
# event we'll just return that instead of an action. The controller will | |
# immediately ask the agent to step again with the new view. | |
condensed_history: list[Event] = [] | |
match self.condenser.condensed_history(state): | |
case View(events=events): | |
condensed_history = events | |
case Condensation(action=condensation_action): | |
return condensation_action | |
logger.debug( | |
f'Processing {len(condensed_history)} events from a total of {len(state.history)} events' | |
) | |
initial_user_message = self._get_initial_user_message(state.history) | |
messages = self._get_messages(condensed_history, initial_user_message) | |
params: dict = { | |
'messages': self.llm.format_messages_for_llm(messages), | |
} | |
params['tools'] = check_tools(self.tools, self.llm.config) | |
params['extra_body'] = {'metadata': state.to_llm_metadata(agent_name=self.name)} | |
response = self.llm.completion(**params) | |
logger.debug(f'Response from LLM: {response}') | |
actions = self.response_to_actions(response) | |
logger.debug(f'Actions after response_to_actions: {actions}') | |
for action in actions: | |
self.pending_actions.append(action) | |
return self.pending_actions.popleft() | |
def _get_initial_user_message(self, history: list[Event]) -> MessageAction: | |
"""Finds the initial user message action from the full history.""" | |
initial_user_message: MessageAction | None = None | |
for event in history: | |
if isinstance(event, MessageAction) and event.source == 'user': | |
initial_user_message = event | |
break | |
if initial_user_message is None: | |
# This should not happen in a valid conversation | |
logger.error( | |
f'CRITICAL: Could not find the initial user MessageAction in the full {len(history)} events history.' | |
) | |
# Depending on desired robustness, could raise error or create a dummy action | |
# and log the error | |
raise ValueError( | |
'Initial user message not found in history. Please report this issue.' | |
) | |
return initial_user_message | |
def _get_messages( | |
self, events: list[Event], initial_user_message: MessageAction | |
) -> list[Message]: | |
"""Constructs the message history for the LLM conversation. | |
This method builds a structured conversation history by processing events from the state | |
and formatting them into messages that the LLM can understand. It handles both regular | |
message flow and function-calling scenarios. | |
The method performs the following steps: | |
1. Checks for SystemMessageAction in events, adds one if missing (legacy support) | |
2. Processes events (Actions and Observations) into messages, including SystemMessageAction | |
3. Handles tool calls and their responses in function-calling mode | |
4. Manages message role alternation (user/assistant/tool) | |
5. Applies caching for specific LLM providers (e.g., Anthropic) | |
6. Adds environment reminders for non-function-calling mode | |
Args: | |
events: The list of events to convert to messages | |
Returns: | |
list[Message]: A list of formatted messages ready for LLM consumption, including: | |
- System message with prompt (from SystemMessageAction) | |
- Action messages (from both user and assistant) | |
- Observation messages (including tool responses) | |
- Environment reminders (in non-function-calling mode) | |
Note: | |
- In function-calling mode, tool calls and their responses are carefully tracked | |
to maintain proper conversation flow | |
- Messages from the same role are combined to prevent consecutive same-role messages | |
- For Anthropic models, specific messages are cached according to their documentation | |
""" | |
if not self.prompt_manager: | |
raise Exception('Prompt Manager not instantiated.') | |
# Use ConversationMemory to process events (including SystemMessageAction) | |
messages = self.conversation_memory.process_events( | |
condensed_history=events, | |
initial_user_action=initial_user_message, | |
max_message_chars=self.llm.config.max_message_chars, | |
vision_is_active=self.llm.vision_is_active(), | |
) | |
if self.llm.is_caching_prompt_active(): | |
self.conversation_memory.apply_prompt_caching(messages) | |
return messages | |
def response_to_actions(self, response: 'ModelResponse') -> list['Action']: | |
return codeact_function_calling.response_to_actions( | |
response, | |
mcp_tool_names=list(self.mcp_tools.keys()), | |
) | |