Backup-bdg's picture
Upload 964 files
51ff9e5 verified
import sys
from typing import Callable, Optional, Sequence, TypeVar, Union
import nltk
import numpy as np
from fuzzywuzzy import fuzz
from rouge import Rouge
# increase recursion depth to ensure ROUGE can be calculated for long sentences
if sys.getrecursionlimit() < 10_000:
sys.setrecursionlimit(10_000)
def bleu(gold: list[str], pred: list[str]) -> float:
"""
Calculate BLEU score, using smoothing method 2 with auto reweighting, in the range of 0~100.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:return: BLEU score
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 * nltk.translate.bleu_score.sentence_bleu(
[gold],
pred,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def batch_bleu(golds: list[list[str]], preds: list[list[str]]) -> list[float]:
"""
Calculate BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of BLEU scores
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [bleu(gold, pred) for gold, pred in zip(golds, preds)]
def corpus_bleu(golds: list[list[str]], preds: list[list[str]]) -> float:
"""
Calculate corpus-level BLEU score for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: corpus-level BLEU score
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return 100.0 * nltk.translate.bleu_score.corpus_bleu(
[[gold] for gold in golds],
preds,
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
def edit_sim(
gold: Union[str, list[str]], pred: Union[str, list[str]], sep: str = ' '
) -> float:
"""
Calculate char-level edit similarity, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:param sep: separator between tokens
:return: char-level edit similarity
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
return fuzz.ratio(gold, pred)
def batch_edit_sim(
golds: list[Union[str, list[str]]],
preds: list[Union[str, list[str]]],
sep: str = ' ',
) -> list[float]:
"""
Calculate char-level edit similarity for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of char-level edit similarity
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [edit_sim(gold, pred, sep) for gold, pred in zip(golds, preds)]
T = TypeVar('T')
def exact_match(gold: T, pred: T) -> float:
"""
Calculate exact match accuracy, in the range of {0, 100}.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: exact match accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
return 100.0 if gold == pred else 0.0
def batch_exact_match(golds: list[T], preds: list[T]) -> list[float]:
"""
Calculate exact match accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:return: list of exact match accuracy
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [exact_match(gold, pred) for gold, pred in zip(golds, preds)]
def rouge_l(
gold: Union[str, list[str]], pred: Union[str, list[str]], sep: str = ' '
) -> dict[str, float]:
"""
Calculate ROUGE-L F1, precision, and recall scores, in the range of 0~100.
:param gold: gold sentence or list of gold tokens
:param pred: predicted sentence or list of predicted tokens
:return: {"p": precision, "r": recall, "f": F1}
"""
if len(pred) == 0 or len(gold) == 0:
return {'p': 0.0, 'r': 0.0, 'f': 0.0}
if isinstance(gold, list):
gold = sep.join(gold)
if isinstance(pred, list):
pred = sep.join(pred)
try:
rouge = Rouge()
scores = rouge.get_scores(hyps=pred, refs=gold, avg=True)
return {x: scores['rouge-l'][x] * 100.0 for x in ['p', 'r', 'f']}
except ValueError:
return {'p': 0.0, 'r': 0.0, 'f': 0.0}
def batch_rouge_l(
golds: list[Union[str, list[str]]],
preds: list[Union[str, list[str]]],
sep: str = ' ',
) -> dict[str, list[float]]:
"""
Calculate ROUGE-L F1, precision, and recall scores for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param sep: separator between tokens
:return: list of {"p": precision, "r": recall, "f": F1}
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
scores = [rouge_l(gold, pred, sep) for gold, pred in zip(golds, preds)]
return {x: [score[x] for score in scores] for x in ['p', 'r', 'f']}
def accuracy(
gold: list[str],
pred: list[str],
ignore: Optional[Sequence[str]] = None,
) -> float:
"""
Calculate token-level accuracy, in the range of 0~100.
If gold and pred are not the same length, the longer one would be truncated.
:param gold: list of gold tokens
:param pred: list of predicted tokens
:param ignore: list of (gold) tokens to ignore
:return: accuracy
"""
if len(pred) == 0 or len(gold) == 0:
return 0.0
if ignore is None:
ignore = []
i = 0
total = 0
match = 0
while i < len(gold) and i < len(pred):
if gold[i] in ignore:
i += 1
continue
total += 1
if gold[i] == pred[i]:
match += 1
i += 1
if total == 0:
return 0.0
return 100.0 * match / total
def batch_accuracy(
golds: list[list[str]],
preds: list[list[str]],
ignore: Optional[Sequence[str]] = None,
) -> list[float]:
"""
Calculate token-level accuracy for a batch of sentences.
:param golds: list of gold sentences
:param preds: list of predicted sentences
:param ignore: list of (gold) tokens to ignore
:return: list of accuracy
"""
if len(golds) != len(preds):
raise ValueError('golds and preds must have the same length')
return [accuracy(gold, pred, ignore) for gold, pred in zip(golds, preds)]
def first_match_to_topk(
first_match_list: list[int], k_values: list[int]
) -> dict[int, list[float]]:
"""
Calculate top-k accuracy with the first match ranks (1-indexed).
:param first_match: first match ranks (1-indexed)
:param k_values: k values to consider
:return: a mapping from k to top-k accuracies (ranging from 0~100)
"""
return {k: [100.0 if x <= k else 0.0 for x in first_match_list] for k in k_values}
def pass_at_k(n: int, c: int, k: int) -> float:
"""
Sample pass@k metric according to the Codex paper, but in the scale of 0~100.
:param n: total number of samples
:param c: number of correct samples
:param k: k in pass@$k$
"""
if n < k or (n - c) < k:
# fallback to the (1 - (1-p)^k) formula
return (1 - (1 - (c / n)) ** k) * 100
else:
return (1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)).item()) * 100
def self_bleu(samples: list[list[str]]) -> float:
"""
Calculate self-BLEU among the samples.
:param samples: the chosen m samples
:return: self-BLEU
"""
if len(samples) == 0:
return 100.0
scores = []
for i in range(len(samples)):
scores.append(
100.0
* nltk.translate.bleu_score.sentence_bleu(
[samples[j] for j in range(len(samples)) if j != i],
samples[i],
smoothing_function=nltk.translate.bleu_score.SmoothingFunction().method2,
auto_reweigh=True,
)
)
return np.mean(scores).item()
def self_edit_distance(samples: list[Union[str, list[str]]], sep=' ') -> float:
"""
Calculate self-edit-distance among the samples.
:param samples: the chosen m samples
:param sep: the separator between tokens
:return: self-edit-distance
"""
if len(samples) == 0:
return 0.0
scores = []
for i in range(len(samples)):
sample_i = samples[i]
if not isinstance(sample_i, str):
sample_i = sep.join(sample_i)
for j in range(len(samples)):
if i == j:
continue
sample_j = samples[j]
if not isinstance(sample_j, str):
sample_j = sep.join(sample_j)
scores.append(100 - fuzz.ratio(sample_i, sample_j))
return np.mean(scores).item()
QUALITY_METRICS: dict[str, Callable[[list[str], list[str]], float]] = {
'bleu': bleu,
'xmatch': exact_match,
'edit-sim': edit_sim,
'rouge-f': lambda g, p: rouge_l(g, p)['f'],
'rouge-p': lambda g, p: rouge_l(g, p)['p'],
'rouge-r': lambda g, p: rouge_l(g, p)['r'],
}