File size: 3,105 Bytes
e0cb286
 
5b74a4b
bc3fe61
83e3ccb
c23e905
 
5b74a4b
bc3fe61
 
 
147483e
def416c
a927d1d
2f47955
 
 
0639911
75c9b3b
2f47955
bc3fe61
75c9b3b
 
bc3fe61
75c9b3b
 
bc3fe61
75c9b3b
 
 
393002d
75c9b3b
 
 
cd0ec84
75c9b3b
 
 
 
dfd48ca
 
 
 
75c9b3b
 
 
 
cd0ec84
75c9b3b
 
25fb027
75c9b3b
 
 
 
 
 
c58bd88
75c9b3b
 
8c23bfa
75c9b3b
 
 
 
17cfe18
b2c7d3a
5b74a4b
 
67f2fe4
8fe6fd5
2ad4835
035bf95
5b74a4b
 
ee37b95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import librosa
import gradio as gr
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, pipeline, AutoTokenizer
import numpy as np
import soundfile as sf
import tempfile

# Load the models and processors
asr_model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
asr_processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
translator = pipeline("text2text-generation", model="dammyogt/damilola-finetuned-NLP-opus-mt-en-ha")
tts = pipeline("text-to-speech", model="Baghdad99/hausa_voice_tts")

def translate_speech(audio_file_path):
    # Load the audio file as a floating point time series
    audio_data, sample_rate = librosa.load(audio_file_path, sr=16000)

    # Prepare the input dictionary
    input_dict = asr_processor(audio_data, sampling_rate=16000, return_tensors="pt", padding=True)  # Pass the resampled audio_data here

    # Use the ASR model to get the logits
    logits = asr_model(input_dict.input_values.to("cpu")).logits

    # Get the predicted IDs
    pred_ids = torch.argmax(logits, dim=-1)[0]

    # Decode the predicted IDs to get the transcription
    transcription = asr_processor.decode(pred_ids)
    print(f"Transcription: {transcription}")  # Print the transcription

    # Use the translation pipeline to translate the transcription
    translated_text = translator(transcription, return_tensors="pt")
    print(f"Translated text: {translated_text}")  # Print the translated text

    # Check if the translated text contains 'generated_token_ids'
    if 'generated_token_ids' in translated_text[0]:
        # Decode the tokens into text
        translated_text_str = translator.tokenizer.decode(translated_text[0]['generated_token_ids'])
        
        # Remove special tokens
        translated_text_str = translated_text_str.replace("<pad>", "").replace("</s>", "").strip()

        print(f"Translated text string: {translated_text_str}")  # Print the translated text string
    else:
        print("The translated text does not contain 'generated_token_ids'")
        return

    # Use the text-to-speech pipeline to synthesize the translated text
    synthesised_speech = tts(translated_text_str)

    # Check if the synthesised speech contains 'audio'
    if 'audio' in synthesised_speech:
        synthesised_speech_data = synthesised_speech['audio']
    else:
        print("The synthesised speech does not contain 'audio'")
        return

    # Flatten the audio data
    synthesised_speech_data = synthesised_speech_data.flatten()

    # Scale the audio data to the range of int16 format
    synthesised_speech = (synthesised_speech_data * 32767).astype(np.int16)

    return 16000, synthesised_speech

# Define the Gradio interface
iface = gr.Interface(
    fn=translate_speech, 
    inputs=gr.inputs.Audio(type="filepath"),  # Change this line
    outputs=gr.outputs.Audio(type="numpy"),
    title="English to Hausa Translation",
    description="Realtime demo for English to Hausa translation using speech recognition and text-to-speech synthesis."
)

iface.launch()