RAG / app.py
Baweja's picture
Update app.py
e5bd012 verified
raw
history blame
10.6 kB
# import torch
# import transformers
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
# import gradio as gr
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# dataset_path = "./5k_index_data/my_knowledge_dataset"
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
# passages_path = dataset_path,
# index_path = index_path,
# n_docs = 5)
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
# rag_model.retriever.init_retrieval()
# rag_model.to(device)
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
# device_map = 'auto',
# torch_dtype = torch.bfloat16,
# )
# def strip_title(title):
# if title.startswith('"'):
# title = title[1:]
# if title.endswith('"'):
# title = title[:-1]
# return title
# # getting the correct format to input in gemma model
# def input_format(query, context):
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
# message = f'Question: {query}'
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
# # retrieving and generating answer in one call
# def retrieved_info(query, rag_model = rag_model, generating_model = model):
# # Tokenize Query
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
# [query],
# return_tensors = 'pt',
# padding = True,
# truncation = True,
# )['input_ids'].to(device)
# # Retrieve Documents
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
# question_encoder_pool_output = question_encoder_output[0]
# result = rag_model.retriever(
# retriever_input_ids,
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
# prefix = rag_model.rag.generator.config.prefix,
# n_docs = rag_model.config.n_docs,
# return_tensors = 'pt',
# )
# # Preparing query and retrieved docs for model
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
# retrieved_context = []
# for docs in all_docs:
# titles = [strip_title(title) for title in docs['title']]
# texts = docs['text']
# for title, text in zip(titles, texts):
# retrieved_context.append(f'{title}: {text}')
# generation_model_input = input_format(query, retrieved_context)
# # Generating answer using gemma model
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
# input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device)
# output = generating_model.generate(input_ids, max_new_tokens = 256)
# return tokenizer.decode(output[0])
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens ,
# temperature,
# top_p,
# ):
# if message: # If there's a user query
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
# return response
# # In case no message, return an empty string
# return ""
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# # Custom title and description
# title = "🧠 Welcome to Your AI Knowledge Assistant"
# description = """
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
# """
# demo = gr.ChatInterface(
# respond,
# type = 'messages',
# additional_inputs=[
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# title=title,
# description=description,
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
# examples=[["✨Future of AI"], ["📱App Development"]],
# example_icons=["🤖", "📱"],
# theme="compact",
# submit_btn = True,
# )
# if __name__ == "__main__":
# demo.launch(share = True )
import torch
import transformers
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM
import gradio as gr
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dataset_path = "./5k_index_data/my_knowledge_dataset"
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss"
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom",
passages_path = dataset_path,
index_path = index_path,
n_docs = 5)
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever)
rag_model.retriever.init_retrieval()
rag_model.to(device)
model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta',
device_map = 'auto',
torch_dtype = torch.bfloat16,
)
def strip_title(title):
if title.startswith('"'):
title = title[1:]
if title.endswith('"'):
title = title[:-1]
return title
# getting the correct format to input in gemma model
def input_format(query, context):
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.'
# message = f'Question: {query}'
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n'
return [
{
"role": "system", "content": f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' },
{
"role": "user", "content": f"{query}"},
]
# retrieving and generating answer in one call
def retrieved_info(query, rag_model = rag_model, generating_model = model):
# Tokenize Query
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
[query],
return_tensors = 'pt',
padding = True,
truncation = True,
)['input_ids'].to(device)
# Retrieve Documents
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids)
question_encoder_pool_output = question_encoder_output[0]
result = rag_model.retriever(
retriever_input_ids,
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(),
prefix = rag_model.rag.generator.config.prefix,
n_docs = rag_model.config.n_docs,
return_tensors = 'pt',
)
# Preparing query and retrieved docs for model
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
retrieved_context = []
for docs in all_docs:
titles = [strip_title(title) for title in docs['title']]
texts = docs['text']
for title, text in zip(titles, texts):
retrieved_context.append(f'{title}: {text}')
print(retrieved_context)
generation_model_input = input_format(query, retrieved_context[0])
# Generating answer using gemma model
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
input_ids = tokenizer(generation_model_input, return_tensors='pt')['input_ids'].to(device)
output = generating_model.generate(input_ids, max_new_tokens = 256)
return tokenizer.decode(output[0])
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens ,
temperature,
top_p,
):
if message: # If there's a user query
response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model
return response
# In case no message, return an empty string
return ""
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# Custom title and description
title = "🧠 Welcome to Your AI Knowledge Assistant"
description = """
Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you.
My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN......
"""
demo = gr.ChatInterface(
respond,
type = 'messages',
additional_inputs=[
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title=title,
description=description,
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]),
examples=[["✨Future of AI"], ["📱App Development"]],
#example_icons=["🤖", "📱"],
theme="compact",
submit_btn = True,
)
if __name__ == "__main__":
demo.launch(share = True,
show_error = True)