# import torch | |
# import transformers | |
# from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM | |
# import gradio as gr | |
# device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# dataset_path = "./5k_index_data/my_knowledge_dataset" | |
# index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss" | |
# tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") | |
# retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", | |
# passages_path = dataset_path, | |
# index_path = index_path, | |
# n_docs = 5) | |
# rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever) | |
# rag_model.retriever.init_retrieval() | |
# rag_model.to(device) | |
# model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta', | |
# device_map = 'auto', | |
# torch_dtype = torch.bfloat16, | |
# ) | |
# def strip_title(title): | |
# if title.startswith('"'): | |
# title = title[1:] | |
# if title.endswith('"'): | |
# title = title[:-1] | |
# return title | |
# # getting the correct format to input in gemma model | |
# def input_format(query, context): | |
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' | |
# message = f'Question: {query}' | |
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n' | |
# # retrieving and generating answer in one call | |
# def retrieved_info(query, rag_model = rag_model, generating_model = model): | |
# # Tokenize Query | |
# retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( | |
# [query], | |
# return_tensors = 'pt', | |
# padding = True, | |
# truncation = True, | |
# )['input_ids'].to(device) | |
# # Retrieve Documents | |
# question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids) | |
# question_encoder_pool_output = question_encoder_output[0] | |
# result = rag_model.retriever( | |
# retriever_input_ids, | |
# question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(), | |
# prefix = rag_model.rag.generator.config.prefix, | |
# n_docs = rag_model.config.n_docs, | |
# return_tensors = 'pt', | |
# ) | |
# # Preparing query and retrieved docs for model | |
# all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) | |
# retrieved_context = [] | |
# for docs in all_docs: | |
# titles = [strip_title(title) for title in docs['title']] | |
# texts = docs['text'] | |
# for title, text in zip(titles, texts): | |
# retrieved_context.append(f'{title}: {text}') | |
# generation_model_input = input_format(query, retrieved_context) | |
# # Generating answer using gemma model | |
# tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") | |
# input_ids = tokenizer(generation_model_input, return_tensors='pt').to(device) | |
# output = generating_model.generate(input_ids, max_new_tokens = 256) | |
# return tokenizer.decode(output[0]) | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens , | |
# temperature, | |
# top_p, | |
# ): | |
# if message: # If there's a user query | |
# response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model | |
# return response | |
# # In case no message, return an empty string | |
# return "" | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# # Custom title and description | |
# title = "🧠 Welcome to Your AI Knowledge Assistant" | |
# description = """ | |
# Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you. | |
# My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN...... | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# type = 'messages', | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# title=title, | |
# description=description, | |
# textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]), | |
# examples=[["✨Future of AI"], ["📱App Development"]], | |
# example_icons=["🤖", "📱"], | |
# theme="compact", | |
# submit_btn = True, | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch(share = True ) | |
import torch | |
import transformers | |
from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
dataset_path = "./5k_index_data/my_knowledge_dataset" | |
index_path = "./5k_index_data/my_knowledge_dataset_hnsw_index.faiss" | |
tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") | |
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", | |
passages_path = dataset_path, | |
index_path = index_path, | |
n_docs = 5) | |
rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever) | |
rag_model.retriever.init_retrieval() | |
rag_model.to(device) | |
model = AutoModelForCausalLM.from_pretrained('HuggingFaceH4/zephyr-7b-beta', | |
device_map = 'auto', | |
torch_dtype = torch.bfloat16, | |
) | |
def strip_title(title): | |
if title.startswith('"'): | |
title = title[1:] | |
if title.endswith('"'): | |
title = title[:-1] | |
return title | |
# getting the correct format to input in gemma model | |
def input_format(query, context): | |
# sys_instruction = f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' | |
# message = f'Question: {query}' | |
# return f'<bos><start_of_turn>\n{sys_instruction}' + f' {message}<end_of_turn>\n' | |
return [ | |
{ | |
"role": "system", "content": f'Context:\n {context} \n Given the following information, generate answer to the question. Provide links in the answer from the information to increase credebility.' }, | |
{ | |
"role": "user", "content": f"{query}"}, | |
] | |
# retrieving and generating answer in one call | |
def retrieved_info(query, rag_model = rag_model, generating_model = model): | |
# Tokenize Query | |
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( | |
[query], | |
return_tensors = 'pt', | |
padding = True, | |
truncation = True, | |
)['input_ids'].to(device) | |
# Retrieve Documents | |
question_encoder_output = rag_model.rag.question_encoder(retriever_input_ids) | |
question_encoder_pool_output = question_encoder_output[0] | |
result = rag_model.retriever( | |
retriever_input_ids, | |
question_encoder_pool_output.cpu().detach().to(torch.float32).numpy(), | |
prefix = rag_model.rag.generator.config.prefix, | |
n_docs = rag_model.config.n_docs, | |
return_tensors = 'pt', | |
) | |
# Preparing query and retrieved docs for model | |
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) | |
retrieved_context = [] | |
for docs in all_docs: | |
titles = [strip_title(title) for title in docs['title']] | |
texts = docs['text'] | |
for title, text in zip(titles, texts): | |
retrieved_context.append(f'{title}: {text}') | |
print(retrieved_context) | |
generation_model_input = input_format(query, retrieved_context[0]) | |
# Generating answer using gemma model | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") | |
input_ids = tokenizer(generation_model_input, return_tensors='pt')['input_ids'].to(device) | |
output = generating_model.generate(input_ids, max_new_tokens = 256) | |
return tokenizer.decode(output[0]) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens , | |
temperature, | |
top_p, | |
): | |
if message: # If there's a user query | |
response = retrieved_info(message) # Get the answer from your local FAISS and Q&A model | |
return response | |
# In case no message, return an empty string | |
return "" | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# Custom title and description | |
title = "🧠 Welcome to Your AI Knowledge Assistant" | |
description = """ | |
Hi!! I am your loyal assistant. My functionality is based on the RAG model. I retrieve relevant information and provide answers based on that. Ask me any questions, and let me assist you. | |
My capabilities are limited because I am still in the development phase. I will do my best to assist you. SOOO LET'S BEGGINNNN...... | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
type = 'messages', | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful and friendly assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
title=title, | |
description=description, | |
textbox=gr.Textbox(placeholder=["'What is the future of AI?' or 'App Development'"]), | |
examples=[["✨Future of AI"], ["📱App Development"]], | |
#example_icons=["🤖", "📱"], | |
theme="compact", | |
submit_btn = True, | |
) | |
if __name__ == "__main__": | |
demo.launch(share = True, | |
show_error = True) | |