CumoThesis / app.py
BenkHel's picture
Update app.py
761ef8c verified
import subprocess
import sys
import os
from transformers import TextIteratorStreamer
import argparse
import time
import subprocess
import spaces
import cumo.serve.gradio_web_server as gws
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor
import datetime
import json
import gradio as gr
import requests
from PIL import Image
from cumo.conversation import (default_conversation, conv_templates, SeparatorStyle)
from cumo.constants import LOGDIR
from cumo.model.language_model.llava_mistral import LlavaMistralForCausalLM
from cumo.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg)
import hashlib
import torch
import io
from cumo.constants import WORKER_HEART_BEAT_INTERVAL
from cumo.utils import (build_logger, server_error_msg,
pretty_print_semaphore)
from cumo.model.builder import load_pretrained_model
from cumo.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread
headers = {"User-Agent": "CuMo"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = 'BenkHel/CumoThesis'
model_base = 'mistralai/Mistral-7B-Instruct-v0.2'
model_name = 'CuMo-mistral-7b'
conv_mode = 'mistral_instruct_system'
load_8bit = False
load_4bit = False
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, model_base, model_name, load_8bit, load_4bit, device=device, use_flash_attn=False
)
model.config.training = False
# FIXED PROMPT
FIXED_PROMPT = "<image>\nWhat type of waste is this item and how to dispose of it?"
def clear_history():
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = FIXED_PROMPT
image = Image.open(imagebox).convert('RGB')
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
@spaces.GPU
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
prompt = FIXED_PROMPT
images = state.get_images(return_pil=True)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
if getattr(model.config, 'mm_use_im_start_end', False):
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = 512
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
title_markdown = ("""
# CuMo: Trained for waste management
""")
tos_markdown = ("""
### Source and Terms of use
This demo is based on the original CuMo project by SHI-Labs ([GitHub](https://github.com/SHI-Labs/CuMo)).
If you use this service or build upon this work, please cite the original publication:
Li, Jiachen and Wang, Xinyao and Zhu, Sijie and Kuo, Chia-wen and Xu, Lu and Chen, Fan and Jain, Jitesh and Shi, Humphrey and Wen, Longyin.
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts. arXiv preprint, 2024.
[[arXiv](https://arxiv.org/abs/2405.05949)]
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
textbox = gr.Textbox(
show_label=False,
placeholder="Prompt is fixed: What type of waste is this item and how to dispose of it?",
container=False,
interactive=False
)
with gr.Blocks(title="CuMo", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
#cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = './cumo/serve'
default_prompt = "<image>\nWhat type of waste is this item and how to dispose of it?"
gr.Examples(examples=[
[f"{cur_dir}/examples/0165 CB.jpg", default_prompt],
[f"{cur_dir}/examples/0225 PA.jpg", default_prompt],
[f"{cur_dir}/examples/0787 GM.jpg", default_prompt],
[f"{cur_dir}/examples/1396 A.jpg", default_prompt],
[f"{cur_dir}/examples/2001 P.jpg", default_prompt],
[f"{cur_dir}/examples/2658 PE.jpg", default_prompt],
[f"{cur_dir}/examples/3113 R.jpg", default_prompt],
[f"{cur_dir}/examples/3750 RPC.jpg", default_prompt],
[f"{cur_dir}/examples/5033 CC.jpg", default_prompt],
[f"{cur_dir}/examples/5307 B.jpg", default_prompt],
], inputs=[imagebox, textbox], cache_examples=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="CuMo Chatbot",
height=650,
layout="panel",
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
clear_btn = gr.Button(value="⚠️ Please press here after every run ⚠️", interactive=False)
stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.queue(
status_update_rate=10,
api_open=False
).launch()