Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import sys | |
import os | |
from transformers import TextIteratorStreamer | |
import argparse | |
import time | |
import subprocess | |
import spaces | |
import cumo.serve.gradio_web_server as gws | |
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor | |
import datetime | |
import json | |
import gradio as gr | |
import requests | |
from PIL import Image | |
from cumo.conversation import (default_conversation, conv_templates, SeparatorStyle) | |
from cumo.constants import LOGDIR | |
from cumo.model.language_model.llava_mistral import LlavaMistralForCausalLM | |
from cumo.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg) | |
import hashlib | |
import torch | |
import io | |
from cumo.constants import WORKER_HEART_BEAT_INTERVAL | |
from cumo.utils import (build_logger, server_error_msg, | |
pretty_print_semaphore) | |
from cumo.model.builder import load_pretrained_model | |
from cumo.mm_utils import process_images, load_image_from_base64, tokenizer_image_token | |
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
headers = {"User-Agent": "CuMo"} | |
no_change_btn = gr.Button() | |
enable_btn = gr.Button(interactive=True) | |
disable_btn = gr.Button(interactive=False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_path = 'BenkHel/CumoThesis' | |
model_base = 'mistralai/Mistral-7B-Instruct-v0.2' | |
model_name = 'CuMo-mistral-7b' | |
conv_mode = 'mistral_instruct_system' | |
load_8bit = False | |
load_4bit = False | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path, model_base, model_name, load_8bit, load_4bit, device=device, use_flash_attn=False | |
) | |
model.config.training = False | |
# FIXED PROMPT | |
FIXED_PROMPT = "<image>\nWhat type of waste is this item and how to dispose of it?" | |
def clear_history(): | |
state = default_conversation.copy() | |
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 | |
def add_text(state, imagebox, textbox, image_process_mode): | |
if state is None: | |
state = conv_templates[conv_mode].copy() | |
if imagebox is not None: | |
textbox = FIXED_PROMPT | |
image = Image.open(imagebox).convert('RGB') | |
textbox = (textbox, image, image_process_mode) | |
state.append_message(state.roles[0], textbox) | |
state.append_message(state.roles[1], None) | |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
def delete_text(state, image_process_mode): | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
def regenerate(state, image_process_mode): | |
state.messages[-1][-1] = None | |
prev_human_msg = state.messages[-2] | |
if type(prev_human_msg[1]) in (tuple, list): | |
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) | |
state.skip_next = False | |
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 | |
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens): | |
prompt = FIXED_PROMPT | |
images = state.get_images(return_pil=True) | |
ori_prompt = prompt | |
num_image_tokens = 0 | |
if images is not None and len(images) > 0: | |
if len(images) > 0: | |
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | |
raise ValueError("Number of images does not match number of <image> tokens in prompt") | |
image_sizes = [image.size for image in images] | |
images = process_images(images, image_processor, model.config) | |
if type(images) is list: | |
images = [image.to(model.device, dtype=torch.float16) for image in images] | |
else: | |
images = images.to(model.device, dtype=torch.float16) | |
replace_token = DEFAULT_IMAGE_TOKEN | |
if getattr(model.config, 'mm_use_im_start_end', False): | |
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches | |
else: | |
images = None | |
image_sizes = None | |
image_args = {"images": images, "image_sizes": image_sizes} | |
else: | |
images = None | |
image_args = {} | |
max_context_length = getattr(model.config, 'max_position_embeddings', 2048) | |
max_new_tokens = 512 | |
do_sample = True if temperature > 0.001 else False | |
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2 | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) | |
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) | |
if max_new_tokens < 1: | |
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" | |
return | |
thread = Thread(target=model.generate, kwargs=dict( | |
inputs=input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
use_cache=True, | |
pad_token_id=tokenizer.eos_token_id, | |
**image_args | |
)) | |
thread.start() | |
generated_text = '' | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[:-len(stop_str)] | |
state.messages[-1][-1] = generated_text | |
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) | |
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5 | |
torch.cuda.empty_cache() | |
title_markdown = (""" | |
# CuMo: Trained for waste management | |
""") | |
tos_markdown = (""" | |
### Source and Terms of use | |
This demo is based on the original CuMo project by SHI-Labs ([GitHub](https://github.com/SHI-Labs/CuMo)). | |
If you use this service or build upon this work, please cite the original publication: | |
Li, Jiachen and Wang, Xinyao and Zhu, Sijie and Kuo, Chia-wen and Xu, Lu and Chen, Fan and Jain, Jitesh and Shi, Humphrey and Wen, Longyin. | |
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts. arXiv preprint, 2024. | |
[[arXiv](https://arxiv.org/abs/2405.05949)] | |
By using this service, users are required to agree to the following terms: | |
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. | |
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. | |
""") | |
learn_more_markdown = (""" | |
### License | |
The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation. | |
""") | |
block_css = """ | |
#buttons button { | |
min-width: min(120px,100%); | |
} | |
""" | |
textbox = gr.Textbox( | |
show_label=False, | |
placeholder="Prompt is fixed: What type of waste is this item and how to dispose of it?", | |
container=False, | |
interactive=False | |
) | |
with gr.Blocks(title="CuMo", theme=gr.themes.Default(), css=block_css) as demo: | |
state = gr.State() | |
gr.Markdown(title_markdown) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
imagebox = gr.Image(label="Input Image", type="filepath") | |
image_process_mode = gr.Radio( | |
["Crop", "Resize", "Pad", "Default"], | |
value="Default", | |
label="Preprocess for non-square image", visible=False) | |
#cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
cur_dir = './cumo/serve' | |
default_prompt = "<image>\nWhat type of waste is this item and how to dispose of it?" | |
gr.Examples(examples=[ | |
[f"{cur_dir}/examples/0165 CB.jpg", default_prompt], | |
[f"{cur_dir}/examples/0225 PA.jpg", default_prompt], | |
[f"{cur_dir}/examples/0787 GM.jpg", default_prompt], | |
[f"{cur_dir}/examples/1396 A.jpg", default_prompt], | |
[f"{cur_dir}/examples/2001 P.jpg", default_prompt], | |
[f"{cur_dir}/examples/2658 PE.jpg", default_prompt], | |
[f"{cur_dir}/examples/3113 R.jpg", default_prompt], | |
[f"{cur_dir}/examples/3750 RPC.jpg", default_prompt], | |
[f"{cur_dir}/examples/5033 CC.jpg", default_prompt], | |
[f"{cur_dir}/examples/5307 B.jpg", default_prompt], | |
], inputs=[imagebox, textbox], cache_examples=False) | |
with gr.Accordion("Parameters", open=False) as parameter_row: | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) | |
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) | |
with gr.Column(scale=8): | |
chatbot = gr.Chatbot( | |
elem_id="chatbot", | |
label="CuMo Chatbot", | |
height=650, | |
layout="panel", | |
) | |
with gr.Row(): | |
with gr.Column(scale=8): | |
textbox.render() | |
with gr.Column(scale=1, min_width=50): | |
submit_btn = gr.Button(value="Send", variant="primary") | |
with gr.Row(elem_id="buttons") as button_row: | |
clear_btn = gr.Button(value="⚠️ Please press here after every run ⚠️", interactive=False) | |
stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) | |
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) | |
gr.Markdown(tos_markdown) | |
gr.Markdown(learn_more_markdown) | |
url_params = gr.JSON(visible=False) | |
# Register listeners | |
btn_list = [regenerate_btn, clear_btn] | |
clear_btn.click( | |
clear_history, | |
None, | |
[state, chatbot, textbox, imagebox] + btn_list, | |
queue=False | |
) | |
regenerate_btn.click( | |
delete_text, | |
[state, image_process_mode], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
).then( | |
generate, | |
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
) | |
textbox.submit( | |
add_text, | |
[state, imagebox, textbox, image_process_mode], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
).then( | |
generate, | |
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
) | |
submit_btn.click( | |
add_text, | |
[state, imagebox, textbox, image_process_mode], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
).then( | |
generate, | |
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens], | |
[state, chatbot, textbox, imagebox] + btn_list, | |
) | |
demo.queue( | |
status_update_rate=10, | |
api_open=False | |
).launch() |