Spaces:
Sleeping
Sleeping
File size: 6,723 Bytes
071cf5b 882e739 071cf5b 32a5ab7 071cf5b 882e739 071cf5b 882e739 071cf5b f3e8b12 7f1a28e 83c726d 00e8e64 f3e8b12 83c726d 32a5ab7 f3e8b12 7f1a28e f3e8b12 4839250 32a5ab7 071cf5b f3e8b12 071cf5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from gtts import gTTS
from pytube import Search
import random
import os
# Load pretrained models
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# Load GPT-2 model and tokenizer for story generation
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2-medium")
gpt2_model = AutoModelForCausalLM.from_pretrained("gpt2-medium")
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True)
def generate_story(theme):
# A detailed prompt for generating a comforting story about the selected theme
story_prompt = f"Write a comforting, detailed, and heartwarming story about {theme}. The story should include a character who faces a tough challenge, finds hope, and ultimately overcomes the situation with a positive resolution."
# Generate story using GPT-2 with adjusted parameters
input_ids = gpt2_tokenizer.encode(story_prompt, return_tensors='pt')
story_ids = gpt2_model.generate(
input_ids,
max_length=450, # Generate slightly shorter but focused stories
temperature=0.7, # Balanced creativity without too much randomness
top_p=0.9, # Encourage diversity in output
top_k=50, # Limit to more probable words
repetition_penalty=1.2, # Prevent repetitive patterns
num_return_sequences=1
)
# Decode the generated text
story = gpt2_tokenizer.decode(story_ids[0], skip_special_tokens=True)
# Clean up the generated story by removing the initial prompt
cleaned_response = story.replace(story_prompt, "").strip()
return cleaned_response
def generate_response(user_input):
# Limit user input length to prevent overflow issues
truncated_input = user_input[:200]
# Construct a simpler prompt for generating empathetic responses
prompt = f"The user is feeling: '{truncated_input}'. Respond with empathy, compassion, and encouragement."
# Encode the prompt
input_ids = gpt2_tokenizer.encode(prompt, return_tensors='pt')
# Generate the response
response_ids = gpt2_model.generate(
input_ids,
max_length=120,
temperature=0.7,
top_p=0.9,
top_k=50,
repetition_penalty=1.2,
num_return_sequences=1
)
# Decode and clean up the generated response
response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True)
cleaned_response = response.replace(prompt, "").strip()
return cleaned_response
# Analyze user input for emotional tone
def get_emotion(user_input):
emotions = emotion_classifier(user_input)
emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
return emotions_sorted[0]['label']
# Function to fetch YouTube videos
def fetch_youtube_videos(activity):
search = Search(f"{activity} for mental health relaxation")
search_results = search.results[:3]
videos = []
for video in search_results:
video_url = f"https://www.youtube.com/watch?v={video.video_id}"
videos.append((video.title, video_url))
return videos
# Streamlit page configuration
st.set_page_config(page_title="Grief and Loss Support Bot πΏ", page_icon="πΏ", layout="centered")
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)
st.title("Grief and Loss Support Bot πΏ")
st.subheader("Your compassionate companion in tough times π")
# Sidebar for Meditation and Story Generation
with st.sidebar:
st.header("π§ Guided Meditation")
if st.button("Play Meditation"):
meditation_audio = "meditation.mp3"
if not os.path.exists(meditation_audio):
tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
tts.save(meditation_audio)
st.audio(meditation_audio, format="audio/mp3")
# Generating a comforting story
st.sidebar.header("π Short Comforting Story")
story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
if st.sidebar.button("Generate Story"):
with st.spinner("Generating your story..."):
story = generate_story(story_theme)
st.text_area("Here's your story:", story, height=300)
# User input section
user_input = st.text_input("Share what's on your mind. I am here to listen...", placeholder="Type here...", max_chars=500, key="user_input_1")
# Initialize session state
if 'previous_responses' not in st.session_state:
st.session_state.previous_responses = []
if 'badges' not in st.session_state:
st.session_state.badges = []
# Initialize session state
if 'badges' not in st.session_state:
st.session_state.badges = []
if user_input:
with st.spinner("Analyzing your input..."):
# Get the emotion of the user input
emotion = get_emotion(user_input)
# Generate an empathetic response
response = generate_response(user_input)
# Display the bot's response
st.text_area("Bot's Response:", response, height=250)
# Assign badges based on the detected emotion
if emotion in ["joy", "optimism"]:
badge = "π Positivity Badge"
if badge not in st.session_state.badges:
st.session_state.badges.append(badge)
st.success(f"Congratulations! You've earned a {badge}!")
# Suggest activities based on emotion
st.info("π¨ Try a New Activity")
activities = ["exercise", "yoga", "journaling", "painting", "meditation", "swimming"]
selected_activity = st.selectbox("Pick an activity:", activities)
if st.button("Find Videos"):
videos = fetch_youtube_videos(selected_activity)
if videos:
for title, url in videos:
st.write(f"[{title}]({url})")
else:
st.write(f"No results found for '{selected_activity}'.")
# Crisis resources
if user_input and any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
st.warning("Please reach out to a crisis hotline for immediate support.")
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")
# Generate audio response
if user_input:
tts = gTTS(response, lang='en')
audio_file = "response.mp3"
tts.save(audio_file)
st.audio(audio_file, format="audio/mp3")
# Display badgesz
if st.session_state.badges:
st.sidebar.header("π
Achievements")
for badge in st.session_state.badges:
st.sidebar.write(badge) |