# import whisper | |
# import gradio as gr | |
# model = whisper.load_model("small") | |
# def transcribe(audio): | |
# #time.sleep(3) | |
# # load audio and pad/trim it to fit 30 seconds | |
# audio = whisper.load_audio(audio) | |
# audio = whisper.pad_or_trim(audio) | |
# # make log-Mel spectrogram and move to the same device as the model | |
# mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# # detect the spoken language | |
# _, probs = model.detect_language(mel) | |
# print(f"Detected language: {max(probs, key=probs.get)}") | |
# # decode the audio | |
# options = whisper.DecodingOptions(fp16 = False) | |
# result = whisper.decode(model, mel, options) | |
# return result.text | |
# gr.Interface( | |
# title = 'Product Recommendation System Text', | |
# fn=transcribe, | |
# inputs=[ | |
# gr.inputs.Audio(source="microphone", type="filepath") | |
# ], | |
# outputs=[ | |
# "textbox" | |
# ], | |
# live=True).launch() | |
import whisper | |
import gradio as gr | |
model = whisper.load_model("small") | |
def transcribe(audio): | |
# Load audio and pad/trim it to fit 30 seconds | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
# Convert to log-Mel spectrogram | |
mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
# Detect the spoken language | |
_, probs = model.detect_language(mel) | |
print(f"Detected language: {max(probs, key=probs.get)}") | |
# Decode the audio | |
options = whisper.DecodingOptions(fp16=False) | |
result = whisper.decode(model, mel, options) | |
return result.text | |
# Update Gradio interface for the new version | |
gr.Interface( | |
title='Product Recommendation System Text', | |
fn=transcribe, | |
inputs=gr.Audio(type="filepath"), # Removed 'source' argument | |
outputs=gr.Textbox(), | |
live=True | |
).launch() | |