Spaces:
Running
Running
File size: 8,498 Bytes
0a2ce36 33ad8cf 0a2ce36 8ef1fbf 0a2ce36 8ef1fbf 0a2ce36 67849dc 0a2ce36 67849dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
#### This is an implmentation of deeplabv3 plus for retina detection
from skimage.measure import label, regionprops
import torch
import torchvision
from torch.nn import functional as F
import torch.nn as nn
import numpy as np
import cv2
import torch
from collections import namedtuple
# check you have the right version of timm
# assert timm.__version__ == "0.3.2"
from timm.models.swin_transformer import swin_base_patch4_window12_384_in22k, SwinTransformer
torch.manual_seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
pad_value = 10
def forward_features(self, x):
x = self.patch_embed(x)
if self.absolute_pos_embed is not None:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
hide=[]
for layer in self.layers:
x = layer(x)
#print(x.shape)
hide.append(x)
#x = self.layers(x)
x = self.norm(x) # B L C
return hide
def forward(self, x):
x = self.forward_features(x)
#x = self.forward_head(x)
return x
SwinTransformer.forward_features = forward_features
SwinTransformer.forward = forward
def extract_regions_Last(img_test, ytruth, pad1=pad_value, pad2=pad_value, pad3=pad_value, pad4=pad_value):
y_truth_copy = ytruth.copy()
y_truth_copy[y_truth_copy == 2] = 1
label_img = label(y_truth_copy)
regions = regionprops(label_img)
max_Area = -1
cropped_results = dict()
for props in regions:
if props.area > max_Area:
max_Area = props.area
minr, minc, maxr, maxc = props.bbox
bx = (minc, maxc, maxc, minc, minc)
by = (minr, minr, maxr, maxr, minr)
# print(minr,maxr)
# print(bx)
# ax.plot(bx, by, '-b', linewidth=2.5)
# cropped_image= pred_class[minr-pad:maxr+pad, minc-pad:maxc+pad]
# cropped_pred_mask = pred_class[minr - pad:maxr + pad, minc - pad:maxc + pad]
if minr - pad1 < 0:
pad1 = 5
if minr - pad1 < 0:
pad1 = 0
if minc - pad2 < 0:
pad2 = 5
if minc - pad2 < 0:
pad2 = 0
if maxr + pad3 > label_img.shape[0]:
pad3 = 5
if maxr + pad3 > label_img.shape[0]:
pad3 = 0
if maxc + pad4 > label_img.shape[1]:
pad4 = 5
if maxc + pad4 > label_img.shape[1]:
pad4 = 0
cropped_image = img_test[minr - pad1:maxr + pad3, minc - pad2:maxc + pad4, :]
cropped_truth = ytruth[minr - pad1:maxr + pad3, minc - pad2:maxc + pad4]
txcordi = []
txcordi.append(minr - pad1)
txcordi.append(maxr + pad3)
txcordi.append(minc - pad2)
txcordi.append(maxc + pad4)
cropped_results['image'] = cropped_image
cropped_results['truth'] = cropped_truth
cropped_results['cord'] = txcordi
return cropped_results
class BasicBlock(nn.Module):
def __init__(self, channel_num):
super(BasicBlock, self).__init__()
# TODO: 3x3 convolution -> relu
# the input and output channel number is channel_num
self.conv_block1 = nn.Sequential(
nn.Conv2d(channel_num, 48, 1, padding=0),
nn.GroupNorm(num_groups=8, num_channels=48),
nn.GELU(),
)
self.conv_block2 = nn.Sequential(
nn.Conv2d(48, channel_num, 3, padding=1),
nn.GroupNorm(num_groups=8, num_channels=channel_num),
nn.GELU(),
)
self.relu = nn.GELU()
def forward(self, x):
# TODO: forward
residual = x
x = self.conv_block1(x)
x = self.conv_block2(x)
x = x + residual
return x
class ASPP(nn.Module):
def __init__(self, image_dim=384, head=1):
super(ASPP, self).__init__()
self.image_dim = image_dim
self.Residual2 = BasicBlock(channel_num=head)
self.pixel_shuffle = nn.PixelShuffle(2)
self.head = head
def forward(self, x):
x21 = F.interpolate(x, size=(self.image_dim, self.image_dim), mode='bilinear',
align_corners=True)
return x21
class Transformer_Regression(nn.Module):
def __init__(self, image_dim=224, dim_patch=24, num_classes=3, scale=1, feat_dim=192):
super(Transformer_Regression, self).__init__()
self.backbone = swin_base_patch4_window12_384_in22k(pretrained=True)
self.aux = 1
self.dim_patch = dim_patch
self.image_dim = image_dim
self.num_classes = num_classes
self.ASPP1 = ASPP(image_dim, head=128)
self.ASPP2 = ASPP(image_dim, head=128)
# self.ASPP3=ASPP(image_dim,scale,feat_dim)
self.feat_dim = feat_dim
# self.scale=1
self.Classifier_main = nn.Sequential(
# nn.Dropout(0.1),
nn.Conv2d(128, self.num_classes, 3, bias=True, padding=1),
)
self.Classifier_aux1 = nn.Sequential(
# nn.Dropout(0.1),
nn.Conv2d(128, self.num_classes, 3, bias=True, padding=1),
)
self.conv1 = nn.Sequential(nn.Conv2d(448, 128, kernel_size=(1, 1), padding=1), nn.GELU())
self.pixelshufler1 = nn.PixelShuffle(2)
self.pixelshufler2 = nn.PixelShuffle(4)
def forward(self, x):
hide1 = self.backbone(x)
x1 = []
x1.append((hide1[0][:, 0:].reshape(-1, 48, 48, 256)))
x1.append((hide1[1][:, 0:].reshape(-1, 24, 24, 512)))
x1.append((hide1[2][:, 0:].reshape(-1, 12, 12, 1024)))
for jk in range(len(x1)):
x1[jk] = x1[jk].permute(0, 3, 1, 2)
x1[1] = self.pixelshufler1(x1[1])
x1[2] = self.pixelshufler2(x1[2])
x1[0] = torch.cat((x1[0], x1[1], x1[2]), 1)
x1[0] = self.conv1(x1[0])
Score = dict()
x_main1 = self.ASPP1(x1[0])
x_main = self.Classifier_main(x_main1)
x_aux_1 = self.ASPP2(x1[0])
x_aux_1 = self.Classifier_aux1(x_aux_1) ####### x_aux_1
Score['seg'] = x_main
Score['seg_aux_1'] = x_aux_1
# Score['seg_aux_2'] = x_aux_2
return Score
Ratios = namedtuple("Ratios", 'cdr hcdr vcdr')
eps = np.finfo(np.float32).eps
def compute_ratios(mask_image):
'''
Given an input image containing the cup and disc masks the function returns
a tuple with the area, horizontal, and vertical cup-to-disc ratios
Input:
mask_image: an image with values (0,1,2) or (255,128,0)
for bg, disc, cup respectively
Output:
Ratios(cdr,hcdr,vcdr): a named tuple containing the computed ratios
'''
# if mask_image.max() == 2:
# make sure correct values are provided in the image
# if np.setdiff1d(np.unique(mask_image),np.array([0,1,2])).shape[0]>0:
# raise ValueError(('Mask values can only be (0,1,2) '
# 'or (255,128,0) for bg, disc, cup'))
# disc = np.uint8(mask_image > 0)
# cup = np.uint8(mask_image > 1)
# elif mask_image.max() == 255:
# # make sure correct values are provided in the image
# if np.setdiff1d(np.unique(mask_image),np.array([0,128,255])).shape[0]>0:
# raise ValueError(('Mask values can only be (0,1,2) '
# 'or (255,128,0) for bg, disc, cup'))
# disc = np.uint8(mask_image < 255)
# cup = np.uint8(mask_image == 0)
# else:
# raise ValueError(("Mask values can only be (0,1,2) or (255,128,0) "
# "for bg, disc, cup"))
# get the area
disc = 0
cup = 0
disc = disc + np.uint8(mask_image > 0)
cup = cup + np.uint8(mask_image > 1)
disc_area = np.sum(disc)
cup_area = np.sum(cup)
# get the vertical and horizontal mesure of the cup
cup_vert = np.sum(cup, axis=0).max().astype(np.int32)
cup_horz = np.sum(cup, axis=1).max().astype(np.int32)
# get the vertical and horizontal mesure of the disc
disc_vert = np.sum(disc, axis=0).max().astype(np.int32)
disc_horz = np.sum(disc, axis=1).max().astype(np.int32)
# calculate the cup to disc ratio
cdr = (cup_area + eps) / (disc_area + eps) # add eps to avoid div by 0
# calculate the horizontal and vertical cup to disc ration
hcdr = (cup_horz + eps) / (disc_horz + eps)
vcdr = (cup_vert + eps) / (disc_vert + eps)
return Ratios(cdr, hcdr, vcdr)
|