Spaces:
Runtime error
Runtime error
File size: 4,236 Bytes
7bc1fb2 414d64e 8784af6 9677df9 8784af6 e234712 fc092d3 f80653e d733a1d 49e6c2a fc092d3 df899db 3d73dee fe2f37b 80ab8fe 6ba8329 6510c54 a54a5d2 09e268e 21ee0e4 a54a5d2 8784af6 414d64e 2473dde 8784af6 f80653e 8784af6 80ab8fe 8784af6 2966e63 8784af6 e234712 8784af6 e234712 8784af6 80ab8fe 8784af6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english: """
@st.cache(allow_output_mutation=True)
def get_model():
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln2")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln40")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2InformalToFormalLincoln42")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points3")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BPointsLincolnFormalInformal")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln2")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln3")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln4")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints2")
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints3")
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points2")
return model, tokenizer
model, tokenizer = get_model()
st.text('''For Prompt Templates: https://huggingface.co/BigSalmon/InformalToFormalLincoln41''')
temp = st.sidebar.slider("Temperature", 0.7, 1.5)
number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
lengths = st.sidebar.slider("Length", 3, 10)
bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
logs_outputs = st.sidebar.slider("Logit Outputs", 50, 300)
def run_generate(text, bad_words):
yo = []
input_ids = tokenizer.encode(text, return_tensors='pt')
res = len(tokenizer.encode(text))
bad_words = bad_words.split()
bad_word_ids = []
for bad_word in bad_words:
bad_word = " " + bad_word
ids = tokenizer(bad_word).input_ids
bad_word_ids.append(ids)
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length= res + lengths,
min_length = res + lengths,
top_k=50,
temperature=temp,
num_return_sequences=number_of_outputs,
bad_words_ids=bad_word_ids
)
for i in range(number_of_outputs):
e = tokenizer.decode(sample_outputs[i])
e = e.replace(text, "")
yo.append(e)
return yo
with st.form(key='my_form'):
text = st.text_area(label='Enter sentence', value=first)
submit_button = st.form_submit_button(label='Submit')
submit_button2 = st.form_submit_button(label='Submit Log Probs')
if submit_button:
translated_text = run_generate(text, bad_words)
st.write(translated_text if translated_text else "No translation found")
if submit_button2:
with torch.no_grad():
text2 = str(text)
print(text2)
text3 = tokenizer.encode(text2)
myinput, past_key_values = torch.tensor([text3]), None
myinput = myinput
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(logs_outputs)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
st.write(best_words) |