File size: 6,325 Bytes
81b2481
 
 
 
 
 
8fc26f7
24da5c3
81b2481
 
24da5c3
81b2481
 
24da5c3
81b2481
 
24da5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b2481
24da5c3
 
81b2481
 
24da5c3
 
81b2481
24da5c3
 
 
 
 
 
 
 
 
 
 
 
81b2481
 
24da5c3
 
81b2481
 
 
 
24da5c3
81b2481
24da5c3
 
 
 
 
 
 
 
 
 
 
 
 
81b2481
24da5c3
 
 
81b2481
24da5c3
 
 
 
81b2481
 
 
8fc26f7
81b2481
 
 
 
 
 
8fc26f7
 
81b2481
8fc26f7
24da5c3
81b2481
24da5c3
 
8fc26f7
24da5c3
 
8fc26f7
 
 
24da5c3
 
 
8fc26f7
 
 
24da5c3
81b2481
24da5c3
 
81b2481
 
24da5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b2481
 
24da5c3
81b2481
 
 
 
24da5c3
 
81b2481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24da5c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline  
from transformers import pipeline
from pathlib import Path

# Load environment variables from .env file if needed
load_dotenv()

# If you have any Hugging Face tokens for private models (AudioLDM2 requires HF_TKN)
hf_token = os.getenv("HF_TKN")

# ------------------------------------------------
# 1) INITIALIZE FREE IMAGE CAPTIONING PIPELINE
# ------------------------------------------------
# Replace "nlpconnect/vit-gpt2-image-captioning" with any other free image captioning model you prefer.
captioning_pipeline = pipeline(
    "image-to-text", 
    model="nlpconnect/vit-gpt2-image-captioning", 
    # If the model is private or requires auth, pass the token here: use_auth_token=hf_token,
)

# ------------------------------------------------
# 2) INITIALIZE AUDIO LDM-2 PIPELINE
# ------------------------------------------------
# AudioLDM2 is also from Hugging Face. If it’s a private model, pass your token via use_auth_token.
# If you’re using the public version, you may not need the token at all.
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
    "cvssp/audioldm2", 
    use_auth_token=hf_token  # remove or comment out if not needed
)
pipe = pipe.to(device)

def analyze_image_with_free_model(image_file):
    """
    Analyzes an uploaded image using a free Hugging Face model for image captioning.
    Returns: (caption_text, is_error_flag)
    """
    try:
        # Save uploaded image to a temporary file
        with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
            temp_file.write(image_file)
            temp_image_path = temp_file.name

        # Run the image captioning pipeline
        results = captioning_pipeline(temp_image_path)
        if not results or not isinstance(results, list):
            return "Error: Could not generate caption.", True
        
        # Typically, pipeline returns a list of dicts with a "generated_text" key
        caption = results[0].get("generated_text", "").strip()
        if not caption:
            return "No caption was generated.", True
        return caption, False

    except Exception as e:
        print(f"Error analyzing image: {e}")
        return f"Error analyzing image: {e}", True

def get_audioldm_from_caption(caption):
    """
    Generates sound from a caption using the AudioLDM-2 model.
    Returns the filename (path) of the generated .wav file.
    """
    try:
        # Generate audio from the caption
        audio_output = pipe(
            prompt=caption,
            num_inference_steps=50,
            guidance_scale=7.5
        )
        audio = audio_output.audios[0]

        # Write the audio to a temporary .wav file
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
            write(temp_wav.name, 16000, audio) 
            return temp_wav.name

    except Exception as e:
        print(f"Error generating audio from caption: {e}")
        return None

# ------------------------------------------------
# 3) GRADIO INTERFACE
# ------------------------------------------------
css = """
#col-container{
    margin: 0 auto;
    max-width: 800px;
    }
"""

with gr.Blocks(css=css) as demo:
    # Main Title and App Description
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
    <h1 style="text-align: center;">
           🎶 Generate Sound Effects from Image
        </h1>
         <p style="text-align: center;">
          ⚡  Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
        </p>
        """)

    gr.Markdown("""
    Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a 
    descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
    
    **💡 How it works:**
    1. **Upload an image**: Choose an image that you'd like to analyze.
    2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
    3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a 
       sound effect that matches the image context.
    
    Enjoy the journey from visual to auditory sensation with just a few clicks!
    """)

    image_upload = gr.File(label="Upload Image", type="binary")
    generate_description_button = gr.Button("Generate Description")
    caption_display = gr.Textbox(label="Image Description", interactive=False)  # Keep read-only
    generate_sound_button = gr.Button("Generate Sound Effect")
    audio_output = gr.Audio(label="Generated Sound Effect")

    # Extra footer
    gr.Markdown("""
    ## 👥 How You Can Contribute
    We welcome contributions and suggestions for improvements. Your feedback is invaluable 
    to the continuous enhancement of this application. 
    
    For support, questions, or to contribute, please contact us at 
    [[email protected]](mailto:[email protected]).
    
    Support our work and get involved by donating through 
    [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
    """)

    gr.Markdown("""
    ## 📢 Stay Connected
    This app is a testament to the creative possibilities that emerge when technology meets art. 
    Enjoy exploring the auditory landscape of your images!
    """)

    # Function to update the caption display based on the uploaded image
    def update_caption(image_file):
        description, error_flag = analyze_image_with_free_model(image_file)
        return description

    # Function to generate sound from the description
    def generate_sound(description):
        if not description or description.startswith("Error"):
            return None  # or some default sound
        audio_path = get_audioldm_from_caption(description)
        return audio_path

    generate_description_button.click(
        fn=update_caption,
        inputs=image_upload,
        outputs=caption_display
    )

    generate_sound_button.click(
        fn=generate_sound,
        inputs=caption_display,
        outputs=audio_output
    )

demo.launch(debug=True, share=True)