File size: 4,800 Bytes
a6e39ab
81b2481
 
 
 
 
 
8fc26f7
24da5c3
81b2481
 
 
 
 
a6e39ab
24da5c3
a6e39ab
 
24da5c3
 
 
a6e39ab
 
24da5c3
 
a6e39ab
24da5c3
81b2481
a6e39ab
 
24da5c3
81b2481
24da5c3
 
 
a6e39ab
 
 
24da5c3
 
 
 
 
 
 
81b2481
 
24da5c3
81b2481
a6e39ab
81b2481
24da5c3
a6e39ab
 
24da5c3
 
 
 
 
a6e39ab
24da5c3
 
 
 
 
81b2481
24da5c3
 
 
81b2481
24da5c3
81b2481
 
 
8fc26f7
81b2481
 
 
 
 
8fc26f7
 
81b2481
8fc26f7
a6e39ab
81b2481
24da5c3
 
8fc26f7
24da5c3
 
8fc26f7
 
 
24da5c3
 
 
8fc26f7
 
 
24da5c3
81b2481
24da5c3
a6e39ab
81b2481
 
24da5c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b2481
a6e39ab
81b2481
 
 
24da5c3
a6e39ab
81b2481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24da5c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import spaces
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline  
from transformers import pipeline
from pathlib import Path

load_dotenv()
hf_token = os.getenv("HF_TKN")

# Initialize pipelines globally (in CPU mode)
captioning_pipeline = pipeline(
    "image-to-text",
    model="nlpconnect/vit-gpt2-image-captioning"
)

pipe = DiffusionPipeline.from_pretrained(
    "cvssp/audioldm2",
    use_auth_token=hf_token
)

@spaces.GPU(duration=120)
def analyze_image_with_free_model(image_file):
    try:
        # Move captioning pipeline to GPU
        captioning_pipeline.to("cuda")
        with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
            temp_file.write(image_file)
            temp_image_path = temp_file.name

        results = captioning_pipeline(temp_image_path)
        # Move back to CPU (optional)
        captioning_pipeline.to("cpu")

        if not results or not isinstance(results, list):
            return "Error: Could not generate caption.", True
        
        caption = results[0].get("generated_text", "").strip()
        if not caption:
            return "No caption was generated.", True
        return caption, False

    except Exception as e:
        return f"Error analyzing image: {e}", True

@spaces.GPU(duration=120)
def get_audioldm_from_caption(caption):
    try:
        # Move AudioLDM pipeline to GPU
        pipe.to("cuda")
        audio_output = pipe(
            prompt=caption,
            num_inference_steps=50,
            guidance_scale=7.5
        )
        pipe.to("cpu")
        audio = audio_output.audios[0]

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
            write(temp_wav.name, 16000, audio) 
            return temp_wav.name

    except Exception as e:
        print(f"Error generating audio from caption: {e}")
        return None

css = """
#col-container{
    margin: 0 auto;
    max-width: 800px;
    }
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML("""
    <h1 style="text-align: center;">
           🎶 Generate Sound Effects from Image
        </h1>
         <p style="text-align: center;">
          âš¡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
        </p>
        """)

    gr.Markdown("""
    Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a 
    descriptive caption and a corresponding sound effect, all using free, open-source models on Hugging Face.
    
    **💡 How it works:**
    1. **Upload an image**: Choose an image that you'd like to analyze.
    2. **Generate Description**: Click on 'Generate Description' to get a textual description of your uploaded image.
    3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a 
       sound effect that matches the image context.
    
    Enjoy the journey from visual to auditory sensation with just a few clicks!
    """)

    image_upload = gr.File(label="Upload Image", type="binary")
    generate_description_button = gr.Button("Generate Description")
    caption_display = gr.Textbox(label="Image Description", interactive=False)
    generate_sound_button = gr.Button("Generate Sound Effect")
    audio_output = gr.Audio(label="Generated Sound Effect")

    gr.Markdown("""
    ## 👥 How You Can Contribute
    We welcome contributions and suggestions for improvements. Your feedback is invaluable 
    to the continuous enhancement of this application. 
    
    For support, questions, or to contribute, please contact us at 
    [[email protected]](mailto:[email protected]).
    
    Support our work and get involved by donating through 
    [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
    """)

    gr.Markdown("""
    ## 📢 Stay Connected
    This app is a testament to the creative possibilities that emerge when technology meets art. 
    Enjoy exploring the auditory landscape of your images!
    """)

    def update_caption(image_file):
        description, _ = analyze_image_with_free_model(image_file)
        return description

    def generate_sound(description):
        if not description or description.startswith("Error"):
            return None
        audio_path = get_audioldm_from_caption(description)
        return audio_path

    generate_description_button.click(
        fn=update_caption,
        inputs=image_upload,
        outputs=caption_display
    )

    generate_sound_button.click(
        fn=generate_sound,
        inputs=caption_display,
        outputs=audio_output
    )

demo.launch(debug=True, share=True)