Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,120 +1,126 @@
|
|
1 |
-
import
|
2 |
import os
|
|
|
|
|
|
|
3 |
import torch
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
-
import scipy.io.wavfile as wav
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
# ---------------------------------------------------------------------
|
16 |
-
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
|
17 |
try:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
except Exception as e:
|
30 |
-
return
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
# ---------------------------------------------------------------------
|
35 |
-
def generate_script(user_input: str, pipeline_llama):
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
)
|
41 |
-
|
42 |
-
|
43 |
-
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
44 |
-
except Exception as e:
|
45 |
-
return f"Error generating script: {e}"
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def load_musicgen_model():
|
51 |
-
try:
|
52 |
-
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
53 |
-
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
54 |
-
return model, processor
|
55 |
-
except Exception as e:
|
56 |
-
return None, str(e)
|
57 |
|
58 |
-
# ---------------------------------------------------------------------
|
59 |
-
# Generate Audio
|
60 |
-
# ---------------------------------------------------------------------
|
61 |
-
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
62 |
-
try:
|
63 |
-
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
64 |
-
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
65 |
-
sr = mg_model.config.audio_encoder.sampling_rate
|
66 |
-
audio_data = outputs[0, 0].cpu().numpy()
|
67 |
-
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
68 |
-
output_file = "radio_jingle.wav"
|
69 |
-
wav.write(output_file, rate=sr, data=normalized_audio)
|
70 |
-
return sr, normalized_audio
|
71 |
except Exception as e:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
with gr.
|
102 |
-
|
|
|
103 |
with gr.Row():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
import os
|
3 |
+
import tempfile
|
4 |
+
import gradio as gr
|
5 |
+
from dotenv import load_dotenv
|
6 |
import torch
|
7 |
+
from scipy.io.wavfile import write
|
8 |
+
from diffusers import DiffusionPipeline
|
9 |
+
from transformers import pipeline
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
hf_token = os.getenv("HF_TKN")
|
14 |
+
|
15 |
+
device_id = 0 if torch.cuda.is_available() else -1
|
16 |
+
|
17 |
+
captioning_pipeline = pipeline(
|
18 |
+
"image-to-text",
|
19 |
+
model="nlpconnect/vit-gpt2-image-captioning",
|
20 |
+
device=device_id
|
21 |
+
)
|
22 |
+
|
23 |
+
pipe = DiffusionPipeline.from_pretrained(
|
24 |
+
"cvssp/audioldm2",
|
25 |
+
use_auth_token=hf_token
|
26 |
)
|
|
|
27 |
|
28 |
+
@spaces.GPU(duration=120)
|
29 |
+
def analyze_image_with_free_model(image_file):
|
|
|
|
|
30 |
try:
|
31 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
32 |
+
temp_file.write(image_file)
|
33 |
+
temp_image_path = temp_file.name
|
34 |
+
|
35 |
+
results = captioning_pipeline(temp_image_path)
|
36 |
+
if not results or not isinstance(results, list):
|
37 |
+
return "Error: Could not generate caption.", True
|
38 |
+
|
39 |
+
caption = results[0].get("generated_text", "").strip()
|
40 |
+
if not caption:
|
41 |
+
return "No caption was generated.", True
|
42 |
+
return caption, False
|
43 |
+
|
44 |
except Exception as e:
|
45 |
+
return f"Error analyzing image: {e}", True
|
46 |
|
47 |
+
@spaces.GPU(duration=120)
|
48 |
+
def get_audioldm_from_caption(caption):
|
|
|
|
|
49 |
try:
|
50 |
+
pipe.to("cuda")
|
51 |
+
audio_output = pipe(
|
52 |
+
prompt=caption,
|
53 |
+
num_inference_steps=50,
|
54 |
+
guidance_scale=7.5
|
55 |
)
|
56 |
+
pipe.to("cpu")
|
57 |
+
audio = audio_output.audios[0]
|
|
|
|
|
|
|
58 |
|
59 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
60 |
+
write(temp_wav.name, 16000, audio)
|
61 |
+
return temp_wav.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
except Exception as e:
|
64 |
+
print(f"Error generating audio from caption: {e}")
|
65 |
+
return None
|
66 |
+
|
67 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column(scale=1):
|
70 |
+
gr.Image(value="https://via.placeholder.com/150", interactive=False, label="App Logo", elem_id="app-logo")
|
71 |
+
with gr.Column(scale=5):
|
72 |
+
gr.HTML("""
|
73 |
+
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 10px;">🎶 Image-to-Sound Generator</div>
|
74 |
+
<div style="text-align: center; font-size: 16px; color: #6c757d;">Transform your images into descriptive captions and immersive soundscapes.</div>
|
75 |
+
""")
|
76 |
+
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
gr.Markdown("""
|
80 |
+
### How It Works
|
81 |
+
1. **Upload an Image**: Select an image to analyze.
|
82 |
+
2. **Generate Description**: Get a detailed caption describing your image.
|
83 |
+
3. **Generate Sound**: Create an audio representation based on the caption.
|
84 |
+
""")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column(scale=1):
|
88 |
+
image_upload = gr.File(label="Upload Image", type="binary")
|
89 |
+
generate_description_button = gr.Button("Generate Description", variant="primary")
|
90 |
+
with gr.Column(scale=2):
|
91 |
+
caption_display = gr.Textbox(label="Generated Caption", interactive=False, placeholder="Your image caption will appear here.")
|
92 |
+
generate_sound_button = gr.Button("Generate Sound", variant="primary")
|
93 |
+
with gr.Column(scale=1):
|
94 |
+
audio_output = gr.Audio(label="Generated Sound Effect", interactive=False)
|
95 |
+
|
96 |
with gr.Row():
|
97 |
+
gr.Markdown("""
|
98 |
+
## About This App
|
99 |
+
This application uses advanced machine learning models to transform images into text captions and generate matching sound effects. It's a unique blend of visual and auditory creativity, powered by state-of-the-art AI technology.
|
100 |
+
|
101 |
+
For inquiries, contact us at [[email protected]](mailto:[email protected]).
|
102 |
+
""")
|
103 |
+
|
104 |
+
def update_caption(image_file):
|
105 |
+
description, _ = analyze_image_with_free_model(image_file)
|
106 |
+
return description
|
107 |
+
|
108 |
+
def generate_sound(description):
|
109 |
+
if not description or description.startswith("Error"):
|
110 |
+
return None
|
111 |
+
audio_path = get_audioldm_from_caption(description)
|
112 |
+
return audio_path
|
113 |
+
|
114 |
+
generate_description_button.click(
|
115 |
+
fn=update_caption,
|
116 |
+
inputs=image_upload,
|
117 |
+
outputs=caption_display
|
118 |
+
)
|
119 |
+
|
120 |
+
generate_sound_button.click(
|
121 |
+
fn=generate_sound,
|
122 |
+
inputs=caption_display,
|
123 |
+
outputs=audio_output
|
124 |
+
)
|
125 |
+
|
126 |
+
demo.launch(debug=True, share=True)
|