Spaces:
Paused
Paused
File size: 5,245 Bytes
e0e731e f7d0739 e0e731e 0781598 e0e731e bf42cab e0e731e f7d0739 e0e731e 6b9bc13 e0e731e baddd3f e0e731e 6b9bc13 e0e731e 6b9bc13 e0e731e 6b9bc13 b8acae3 6b9bc13 e0e731e bf42cab e0e731e b8acae3 e0e731e b8acae3 e0e731e f7d0739 0781598 85e24ba e0e731e 85e24ba b8acae3 0781598 e0e731e 0781598 b8acae3 e0e731e b8acae3 0781598 0b10e6e e0e731e b8acae3 85e24ba e0e731e bf42cab 0781598 e0e731e bf42cab e0e731e f7d0739 e0e731e 6b9bc13 e0e731e 6b9bc13 e0e731e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import sys
import io, os, stat
import subprocess
import random
from zipfile import ZipFile
import uuid
import time
import torch
import torchaudio
import time
# Mantenemos la descarga de MeCab
os.system('python -m unidic download')
# Mantenemos el acuerdo de CPML
os.environ["COQUI_TOS_AGREED"] = "1"
import langid
import base64
import csv
from io import StringIO
import datetime
import re
import gradio as gr
from scipy.io.wavfile import write
from pydub import AudioSegment
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
HF_TOKEN = os.environ.get("HF_TOKEN")
from huggingface_hub import hf_hub_download
import os
from TTS.utils.manage import get_user_data_dir
# Mantenemos la autenticación y descarga del modelo
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Downloading {file_name} from {repo_id}")
local_file_path = os.path.join(local_dir, file_name)
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
# Cargamos configuración y modelo
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False)
print("Modelo cargado en CPU")
# Mantenemos variables globales y funciones auxiliares
DEVICE_ASSERT_DETECTED = 0
DEVICE_ASSERT_PROMPT = None
DEVICE_ASSERT_LANG = None
supported_languages = config.languages
# Función de inferencia usando parámetros predeterminados del archivo de configuración
def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
try:
if use_mic:
speaker_wav = mic_file_path
else:
speaker_wav = audio_file_pth
if len(prompt) < 2 or len(prompt) > 200:
return None, None, "El texto debe tener entre 2 y 200 caracteres."
# Usamos los valores de la configuración directamente
temperature = getattr(config, "temperature", 0.75)
repetition_penalty = getattr(config, "repetition_penalty", 5.0)
gpt_cond_len = getattr(config, "gpt_cond_len", 30)
gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4)
max_ref_length = getattr(config, "max_ref_len", 60)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=gpt_cond_len,
gpt_cond_chunk_len=gpt_cond_chunk_len,
max_ref_length=max_ref_length
)
# Medimos el tiempo de inferencia manualmente
start_time = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
inference_time = time.time() - start_time
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
# Calculamos las métricas usando el tiempo medido manualmente
audio_length = len(out["wav"]) / 24000 # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return gr.make_waveform("output.wav"), "output.wav", metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, None, f"Error: {str(e)}"
# Interfaz de Gradio actualizada sin sliders
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("# Sintetizador de Voz XTTS")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
audio_file = gr.Audio(label="Audio de referencia", type="filepath")
use_mic = gr.Checkbox(label="Usar micrófono")
mic_file = gr.Audio(label="Grabar con micrófono", source="microphone", type="filepath", visible=False)
use_mic.change(fn=lambda x: gr.update(visible=x), inputs=[use_mic], outputs=[mic_file])
generate_button = gr.Button("Generar voz")
with gr.Column():
output_audio = gr.Audio(label="Audio generado")
waveform = gr.Image(label="Forma de onda")
metrics = gr.Textbox(label="Métricas")
generate_button.click(
predict,
inputs=[input_text, language, audio_file, mic_file, use_mic],
outputs=[waveform, output_audio, metrics]
)
demo.launch(debug=True)
|