Blakus's picture
Update app.py
0781598 verified
raw
history blame
5.25 kB
import sys
import io, os, stat
import subprocess
import random
from zipfile import ZipFile
import uuid
import time
import torch
import torchaudio
import time
# Mantenemos la descarga de MeCab
os.system('python -m unidic download')
# Mantenemos el acuerdo de CPML
os.environ["COQUI_TOS_AGREED"] = "1"
import langid
import base64
import csv
from io import StringIO
import datetime
import re
import gradio as gr
from scipy.io.wavfile import write
from pydub import AudioSegment
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
HF_TOKEN = os.environ.get("HF_TOKEN")
from huggingface_hub import hf_hub_download
import os
from TTS.utils.manage import get_user_data_dir
# Mantenemos la autenticación y descarga del modelo
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]
for file_name in files_to_download:
print(f"Downloading {file_name} from {repo_id}")
local_file_path = os.path.join(local_dir, file_name)
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)
# Cargamos configuración y modelo
config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")
config = XttsConfig()
config.load_json(config_path)
model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False)
print("Modelo cargado en CPU")
# Mantenemos variables globales y funciones auxiliares
DEVICE_ASSERT_DETECTED = 0
DEVICE_ASSERT_PROMPT = None
DEVICE_ASSERT_LANG = None
supported_languages = config.languages
# Función de inferencia usando parámetros predeterminados del archivo de configuración
def predict(prompt, language, audio_file_pth, mic_file_path, use_mic):
try:
if use_mic:
speaker_wav = mic_file_path
else:
speaker_wav = audio_file_pth
if len(prompt) < 2 or len(prompt) > 200:
return None, None, "El texto debe tener entre 2 y 200 caracteres."
# Usamos los valores de la configuración directamente
temperature = getattr(config, "temperature", 0.75)
repetition_penalty = getattr(config, "repetition_penalty", 5.0)
gpt_cond_len = getattr(config, "gpt_cond_len", 30)
gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4)
max_ref_length = getattr(config, "max_ref_len", 60)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=gpt_cond_len,
gpt_cond_chunk_len=gpt_cond_chunk_len,
max_ref_length=max_ref_length
)
# Medimos el tiempo de inferencia manualmente
start_time = time.time()
out = model.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
inference_time = time.time() - start_time
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
# Calculamos las métricas usando el tiempo medido manualmente
audio_length = len(out["wav"]) / 24000 # duración del audio en segundos
real_time_factor = inference_time / audio_length
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"
return gr.make_waveform("output.wav"), "output.wav", metrics_text
except Exception as e:
print(f"Error detallado: {str(e)}")
return None, None, f"Error: {str(e)}"
# Interfaz de Gradio actualizada sin sliders
with gr.Blocks(theme=gr.themes.Base()) as demo:
gr.Markdown("# Sintetizador de Voz XTTS")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es")
audio_file = gr.Audio(label="Audio de referencia", type="filepath")
use_mic = gr.Checkbox(label="Usar micrófono")
mic_file = gr.Audio(label="Grabar con micrófono", source="microphone", type="filepath", visible=False)
use_mic.change(fn=lambda x: gr.update(visible=x), inputs=[use_mic], outputs=[mic_file])
generate_button = gr.Button("Generar voz")
with gr.Column():
output_audio = gr.Audio(label="Audio generado")
waveform = gr.Image(label="Forma de onda")
metrics = gr.Textbox(label="Métricas")
generate_button.click(
predict,
inputs=[input_text, language, audio_file, mic_file, use_mic],
outputs=[waveform, output_audio, metrics]
)
demo.launch(debug=True)