Spaces:
Paused
Paused
import sys | |
import io, os, stat | |
import subprocess | |
import random | |
from zipfile import ZipFile | |
import uuid | |
import time | |
import torch | |
import torchaudio | |
import langid | |
import base64 | |
import csv | |
from io import StringIO | |
import datetime | |
import re | |
from scipy.io.wavfile import write | |
from pydub import AudioSegment | |
import gradio as gr | |
from TTS.api import TTS | |
from TTS.tts.configs.xtts_config import XttsConfig | |
from TTS.tts.models.xtts import Xtts | |
from TTS.utils.generic_utils import get_user_data_dir | |
from huggingface_hub import hf_hub_download | |
# Configuración inicial | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
os.system('python -m unidic download') | |
# Autenticación y descarga del modelo | |
repo_id = "Blakus/Pedro_Lab_XTTS" | |
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2") | |
os.makedirs(local_dir, exist_ok=True) | |
files_to_download = ["config.json", "model.pth", "vocab.json"] | |
for file_name in files_to_download: | |
print(f"Downloading {file_name} from {repo_id}") | |
local_file_path = os.path.join(local_dir, file_name) | |
hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir) | |
# Carga de configuración y modelo | |
config_path = os.path.join(local_dir, "config.json") | |
checkpoint_path = os.path.join(local_dir, "model.pth") | |
vocab_path = os.path.join(local_dir, "vocab.json") | |
config = XttsConfig() | |
config.load_json(config_path) | |
model = Xtts.init_from_config(config) | |
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False) | |
print("Modelo cargado en CPU") | |
# Variables globales | |
supported_languages = config.languages | |
reference_audios = [ | |
"serio.wav", | |
"neutral.wav", | |
"alegre.wav", | |
] | |
# Función para dividir el texto en chunks | |
def split_text(text): | |
sentences = re.split(r'(?<=[.!?])\s+', text) | |
return sentences | |
# Función de inferencia mejorada | |
def predict(prompt, language, audio_file_pth, use_reference_audio): | |
try: | |
if use_reference_audio: | |
speaker_wav = audio_file_pth | |
else: | |
speaker_wav = "neutral.wav" # Audio por defecto si no se selecciona uno | |
sentences = split_text(prompt) | |
temperature = getattr(config, "temperature", 0.75) | |
repetition_penalty = getattr(config, "repetition_penalty", 5.0) | |
gpt_cond_len = getattr(config, "gpt_cond_len", 30) | |
gpt_cond_chunk_len = getattr(config, "gpt_cond_chunk_len", 4) | |
max_ref_length = getattr(config, "max_ref_len", 60) | |
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents( | |
audio_path=speaker_wav, | |
gpt_cond_len=gpt_cond_len, | |
gpt_cond_chunk_len=gpt_cond_chunk_len, | |
max_ref_length=max_ref_length | |
) | |
start_time = time.time() | |
combined_audio = AudioSegment.empty() | |
for sentence in sentences: | |
out = model.inference( | |
sentence, | |
language, | |
gpt_cond_latent, | |
speaker_embedding, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
) | |
audio_segment = AudioSegment( | |
out["wav"].tobytes(), | |
frame_rate=24000, | |
sample_width=2, | |
channels=1 | |
) | |
combined_audio += audio_segment | |
combined_audio += AudioSegment.silent(duration=500) # 0.5 segundos de silencio | |
inference_time = time.time() - start_time | |
output_path = "output.wav" | |
combined_audio.export(output_path, format="wav") | |
audio_length = len(combined_audio) / 1000 # duración del audio en segundos | |
real_time_factor = inference_time / audio_length | |
metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n" | |
metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}" | |
return gr.make_waveform(output_path), output_path, metrics_text | |
except Exception as e: | |
print(f"Error detallado: {str(e)}") | |
return None, None, f"Error: {str(e)}" | |
# Definir el tema personalizado | |
theme = gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="gray", | |
).set( | |
body_background_fill='*neutral_100', | |
body_background_fill_dark='*neutral_900', | |
) | |
# Descripción del proyecto | |
description = """ | |
# Sintetizador de voz de Pedro Labattaglia 🎙️ | |
Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia. | |
## Cómo usarlo: | |
- Elija el idioma (Español o Inglés) | |
- Elija un audio de referencia de la lista o cargue su propio audio | |
- Escriba el texto a sintetizar | |
- Presione generar voz | |
""" | |
# Interfaz de Gradio | |
with gr.Blocks(theme=theme) as demo: | |
gr.Markdown(description) | |
with gr.Row(): | |
gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", label="", show_label=False, width=250, height=250) | |
with gr.Row(): | |
with gr.Column(scale=2): | |
language = gr.Dropdown(label="Idioma", choices=supported_languages, value="es") | |
use_reference_audio = gr.Checkbox(label="Usar audio de referencia") | |
reference_audio = gr.Dropdown(label="Audio de referencia predefinido", choices=reference_audios, visible=False) | |
audio_file = gr.Audio(label="O cargue su propio audio de referencia", type="filepath", visible=False) | |
use_reference_audio.change( | |
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)], | |
inputs=[use_reference_audio], | |
outputs=[reference_audio, audio_file] | |
) | |
input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...", lines=5) | |
generate_button = gr.Button("Generar voz", variant="primary") | |
with gr.Column(scale=1): | |
output_audio = gr.Audio(label="Audio generado") | |
waveform = gr.Image(label="Forma de onda") | |
metrics = gr.Textbox(label="Métricas") | |
generate_button.click( | |
predict, | |
inputs=[input_text, language, audio_file, use_reference_audio], | |
outputs=[waveform, output_audio, metrics] | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |