Spaces:
Sleeping
Sleeping
import glob | |
import random | |
import time | |
from typing import Any, Callable, Dict, List, Optional, Union | |
# import moxing as mox | |
import numpy as np | |
import torch | |
from diffusers.loaders import TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.attention_processor import Attention | |
from diffusers.pipelines.stable_diffusion import ( | |
StableDiffusionPipeline, | |
StableDiffusionPipelineOutput, | |
StableDiffusionSafetyChecker, | |
) | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import logging | |
from PIL import Image, ImageDraw, ImageFont | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
import inspect | |
import os | |
import math | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# from utils import load_utils | |
import argparse | |
import yaml | |
import cv2 | |
import math | |
from migc.migc_arch import MIGC, NaiveFuser | |
from scipy.ndimage import uniform_filter, gaussian_filter | |
logger = logging.get_logger(__name__) | |
class AttentionStore: | |
def get_empty_store(): | |
return {"down": [], "mid": [], "up": []} | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if is_cross: | |
if attn.shape[1] in self.attn_res: | |
self.step_store[place_in_unet].append(attn) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers: | |
self.cur_att_layer = 0 | |
self.between_steps() | |
def between_steps(self): | |
self.attention_store = self.step_store | |
self.step_store = self.get_empty_store() | |
def maps(self, block_type: str): | |
return self.attention_store[block_type] | |
def reset(self): | |
self.cur_att_layer = 0 | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self, attn_res=[64*64, 32*32, 16*16, 8*8]): | |
""" | |
Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion | |
process | |
""" | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
self.curr_step_index = 0 | |
self.attn_res = attn_res | |
def get_sup_mask(mask_list): | |
or_mask = np.zeros_like(mask_list[0]) | |
for mask in mask_list: | |
or_mask += mask | |
or_mask[or_mask >= 1] = 1 | |
sup_mask = 1 - or_mask | |
return sup_mask | |
class MIGCProcessor(nn.Module): | |
def __init__(self, config, attnstore, place_in_unet): | |
super().__init__() | |
self.attnstore = attnstore | |
self.place_in_unet = place_in_unet | |
self.not_use_migc = config['not_use_migc'] | |
self.naive_fuser = NaiveFuser() | |
self.embedding = {} | |
if not self.not_use_migc: | |
self.migc = MIGC(config['C']) | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
prompt_nums=[], | |
bboxes=[], | |
ith=None, | |
embeds_pooler=None, | |
timestep=None, | |
height=512, | |
width=512, | |
MIGCsteps=20, | |
NaiveFuserSteps=-1, | |
ca_scale=None, | |
ea_scale=None, | |
sac_scale=None, | |
use_sa_preserve=False, | |
sa_preserve=False, | |
): | |
batch_size, sequence_length, _ = hidden_states.shape | |
assert(batch_size == 2, "We currently only implement sampling with batch_size=1, \ | |
and we will implement sampling with batch_size=N as soon as possible.") | |
attention_mask = attn.prepare_attention_mask( | |
attention_mask, sequence_length, batch_size | |
) | |
instance_num = len(bboxes[0]) | |
if ith > MIGCsteps: | |
not_use_migc = True | |
else: | |
not_use_migc = self.not_use_migc | |
is_vanilla_cross = (not_use_migc and ith > NaiveFuserSteps) | |
if instance_num == 0: | |
is_vanilla_cross = True | |
is_cross = encoder_hidden_states is not None | |
ori_hidden_states = hidden_states.clone() | |
# Only Need Negative Prompt and Global Prompt. | |
if is_cross and is_vanilla_cross: | |
encoder_hidden_states = encoder_hidden_states[:2, ...] | |
# In this case, we need to use MIGC or naive_fuser, so we copy the hidden_states_cond (instance_num+1) times for QKV | |
if is_cross and not is_vanilla_cross: | |
hidden_states_uncond = hidden_states[[0], ...] | |
hidden_states_cond = hidden_states[[1], ...].repeat(instance_num + 1, 1, 1) | |
hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond]) | |
# QKV Operation of Vanilla Self-Attention or Cross-Attention | |
query = attn.to_q(hidden_states) | |
if ( | |
not is_cross | |
and use_sa_preserve | |
and timestep.item() in self.embedding | |
and self.place_in_unet == "up" | |
): | |
hidden_states = torch.cat((hidden_states, torch.from_numpy(self.embedding[timestep.item()]).to(hidden_states.device)), dim=1) | |
if not is_cross and sa_preserve and self.place_in_unet == "up": | |
self.embedding[timestep.item()] = ori_hidden_states.cpu().numpy() | |
encoder_hidden_states = ( | |
encoder_hidden_states | |
if encoder_hidden_states is not None | |
else hidden_states | |
) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) # 48 4096 77 | |
self.attnstore(attention_probs, is_cross, self.place_in_unet) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
hidden_states = attn.to_out[0](hidden_states) | |
hidden_states = attn.to_out[1](hidden_states) | |
###### Self-Attention Results ###### | |
if not is_cross: | |
return hidden_states | |
###### Vanilla Cross-Attention Results ###### | |
if is_vanilla_cross: | |
return hidden_states | |
###### Cross-Attention with MIGC ###### | |
assert (not is_vanilla_cross) | |
# hidden_states: torch.Size([1+1+instance_num, HW, C]), the first 1 is the uncond ca output, the second 1 is the global ca output. | |
hidden_states_uncond = hidden_states[[0], ...] # torch.Size([1, HW, C]) | |
cond_ca_output = hidden_states[1: , ...].unsqueeze(0) # torch.Size([1, 1+instance_num, 5, 64, 1280]) | |
guidance_masks = [] | |
in_box = [] | |
# Construct Instance Guidance Mask | |
for bbox in bboxes[0]: | |
guidance_mask = np.zeros((height, width)) | |
w_min = int(width * bbox[0]) | |
w_max = int(width * bbox[2]) | |
h_min = int(height * bbox[1]) | |
h_max = int(height * bbox[3]) | |
guidance_mask[h_min: h_max, w_min: w_max] = 1.0 | |
guidance_masks.append(guidance_mask[None, ...]) | |
in_box.append([bbox[0], bbox[2], bbox[1], bbox[3]]) | |
# Construct Background Guidance Mask | |
sup_mask = get_sup_mask(guidance_masks) | |
supplement_mask = torch.from_numpy(sup_mask[None, ...]) | |
supplement_mask = F.interpolate(supplement_mask, (height//8, width//8), mode='bilinear').float() | |
supplement_mask = supplement_mask.to(hidden_states.device) # (1, 1, H, W) | |
guidance_masks = np.concatenate(guidance_masks, axis=0) | |
guidance_masks = guidance_masks[None, ...] | |
guidance_masks = torch.from_numpy(guidance_masks).float().to(cond_ca_output.device) | |
guidance_masks = F.interpolate(guidance_masks, (height//8, width//8), mode='bilinear') # (1, instance_num, H, W) | |
in_box = torch.from_numpy(np.array(in_box))[None, ...].float().to(cond_ca_output.device) # (1, instance_num, 4) | |
other_info = {} | |
other_info['image_token'] = hidden_states_cond[None, ...] | |
other_info['context'] = encoder_hidden_states[1:, ...] | |
other_info['box'] = in_box | |
other_info['context_pooler'] =embeds_pooler # (instance_num, 1, 768) | |
other_info['supplement_mask'] = supplement_mask | |
other_info['attn2'] = None | |
other_info['attn'] = attn | |
other_info['height'] = height | |
other_info['width'] = width | |
other_info['ca_scale'] = ca_scale | |
other_info['ea_scale'] = ea_scale | |
other_info['sac_scale'] = sac_scale | |
if not not_use_migc: | |
hidden_states_cond, fuser_info = self.migc(cond_ca_output, | |
guidance_masks, | |
other_info=other_info, | |
return_fuser_info=True) | |
else: | |
hidden_states_cond, fuser_info = self.naive_fuser(cond_ca_output, | |
guidance_masks, | |
other_info=other_info, | |
return_fuser_info=True) | |
hidden_states_cond = hidden_states_cond.squeeze(1) | |
hidden_states = torch.cat([hidden_states_uncond, hidden_states_cond]) | |
return hidden_states | |
class StableDiffusionMIGCPipeline(StableDiffusionPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
requires_safety_checker: bool = True, | |
): | |
# Get the parameter signature of the parent class constructor | |
parent_init_signature = inspect.signature(super().__init__) | |
parent_init_params = parent_init_signature.parameters | |
# Dynamically build a parameter dictionary based on the parameters of the parent class constructor | |
init_kwargs = { | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"unet": unet, | |
"scheduler": scheduler, | |
"safety_checker": safety_checker, | |
"feature_extractor": feature_extractor, | |
"requires_safety_checker": requires_safety_checker | |
} | |
if 'image_encoder' in parent_init_params.items(): | |
init_kwargs['image_encoder'] = image_encoder | |
super().__init__(**init_kwargs) | |
self.instance_set = set() | |
self.embedding = {} | |
def _encode_prompt( | |
self, | |
prompts, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
""" | |
if prompts is not None and isinstance(prompts, str): | |
batch_size = 1 | |
elif prompts is not None and isinstance(prompts, list): | |
batch_size = len(prompts) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
prompt_embeds_none_flag = (prompt_embeds is None) | |
prompt_embeds_list = [] | |
embeds_pooler_list = [] | |
for prompt in prompts: | |
if prompt_embeds_none_flag: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer( | |
prompt, padding="longest", return_tensors="pt" | |
).input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[ | |
-1 | |
] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if ( | |
hasattr(self.text_encoder.config, "use_attention_mask") | |
and self.text_encoder.config.use_attention_mask | |
): | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
embeds_pooler = prompt_embeds.pooler_output | |
prompt_embeds = prompt_embeds[0] | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) | |
embeds_pooler = embeds_pooler.to(dtype=self.text_encoder.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
embeds_pooler = embeds_pooler.repeat(1, num_images_per_prompt) | |
prompt_embeds = prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1 | |
) | |
embeds_pooler = embeds_pooler.view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
prompt_embeds_list.append(prompt_embeds) | |
embeds_pooler_list.append(embeds_pooler) | |
prompt_embeds = torch.cat(prompt_embeds_list, dim=0) | |
embeds_pooler = torch.cat(embeds_pooler_list, dim=0) | |
# negative_prompt_embeds: (prompt_nums[0]+prompt_nums[1]+...prompt_nums[n], token_num, token_channel), <class 'torch.Tensor'> | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
negative_prompt = "worst quality, low quality, bad anatomy" | |
uncond_tokens = [negative_prompt] * batch_size | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if ( | |
hasattr(self.text_encoder.config, "use_attention_mask") | |
and self.text_encoder.config.use_attention_mask | |
): | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to( | |
dtype=self.text_encoder.dtype, device=device | |
) | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1 | |
) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
batch_size * num_images_per_prompt, seq_len, -1 | |
) | |
# negative_prompt_embeds: (len(prompt_nums), token_num, token_channel), <class 'torch.Tensor'> | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
final_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return final_prompt_embeds, prompt_embeds, embeds_pooler[:, None, :] | |
def check_inputs( | |
self, | |
prompt, | |
token_indices, | |
bboxes, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError( | |
f"`height` and `width` have to be divisible by 8 but are {height} and {width}." | |
) | |
if (callback_steps is None) or ( | |
callback_steps is not None | |
and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and ( | |
not isinstance(prompt, str) and not isinstance(prompt, list) | |
): | |
raise ValueError( | |
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if token_indices is not None: | |
if isinstance(token_indices, list): | |
if isinstance(token_indices[0], list): | |
if isinstance(token_indices[0][0], list): | |
token_indices_batch_size = len(token_indices) | |
elif isinstance(token_indices[0][0], int): | |
token_indices_batch_size = 1 | |
else: | |
raise TypeError( | |
"`token_indices` must be a list of lists of integers or a list of integers." | |
) | |
else: | |
raise TypeError( | |
"`token_indices` must be a list of lists of integers or a list of integers." | |
) | |
else: | |
raise TypeError( | |
"`token_indices` must be a list of lists of integers or a list of integers." | |
) | |
if bboxes is not None: | |
if isinstance(bboxes, list): | |
if isinstance(bboxes[0], list): | |
if ( | |
isinstance(bboxes[0][0], list) | |
and len(bboxes[0][0]) == 4 | |
and all(isinstance(x, float) for x in bboxes[0][0]) | |
): | |
bboxes_batch_size = len(bboxes) | |
elif ( | |
isinstance(bboxes[0], list) | |
and len(bboxes[0]) == 4 | |
and all(isinstance(x, float) for x in bboxes[0]) | |
): | |
bboxes_batch_size = 1 | |
else: | |
print(isinstance(bboxes[0], list), len(bboxes[0])) | |
raise TypeError( | |
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats." | |
) | |
else: | |
print(isinstance(bboxes[0], list), len(bboxes[0])) | |
raise TypeError( | |
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats." | |
) | |
else: | |
print(isinstance(bboxes[0], list), len(bboxes[0])) | |
raise TypeError( | |
"`bboxes` must be a list of lists of list with four floats or a list of tuples with four floats." | |
) | |
if prompt is not None and isinstance(prompt, str): | |
prompt_batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
prompt_batch_size = len(prompt) | |
elif prompt_embeds is not None: | |
prompt_batch_size = prompt_embeds.shape[0] | |
if token_indices_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"token indices batch size must be same as prompt batch size. token indices batch size: {token_indices_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
if bboxes_batch_size != prompt_batch_size: | |
raise ValueError( | |
f"bbox batch size must be same as prompt batch size. bbox batch size: {bboxes_batch_size}, prompt batch size: {prompt_batch_size}" | |
) | |
def get_indices(self, prompt: str) -> Dict[str, int]: | |
"""Utility function to list the indices of the tokens you wish to alte""" | |
ids = self.tokenizer(prompt).input_ids | |
indices = { | |
i: tok | |
for tok, i in zip( | |
self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)) | |
) | |
} | |
return indices | |
def draw_box(pil_img: Image, bboxes: List[List[float]]) -> Image: | |
"""Utility function to draw bbox on the image""" | |
width, height = pil_img.size | |
draw = ImageDraw.Draw(pil_img) | |
for obj_box in bboxes: | |
x_min, y_min, x_max, y_max = ( | |
obj_box[0] * width, | |
obj_box[1] * height, | |
obj_box[2] * width, | |
obj_box[3] * height, | |
) | |
draw.rectangle( | |
[int(x_min), int(y_min), int(x_max), int(y_max)], | |
outline="red", | |
width=4, | |
) | |
return pil_img | |
def draw_box_desc(pil_img: Image, bboxes: List[List[float]], prompt: List[str]) -> Image: | |
"""Utility function to draw bbox on the image""" | |
color_list = ['red', 'blue', 'yellow', 'purple', 'green', 'black', 'brown', 'orange', 'white', 'gray'] | |
width, height = pil_img.size | |
draw = ImageDraw.Draw(pil_img) | |
font_folder = os.path.dirname(os.path.dirname(__file__)) | |
font_path = os.path.join(font_folder, 'Rainbow-Party-2.ttf') | |
font = ImageFont.truetype(font_path, 30) | |
for box_id in range(len(bboxes)): | |
obj_box = bboxes[box_id] | |
text = prompt[box_id] | |
fill = 'black' | |
for color in prompt[box_id].split(' '): | |
if color in color_list: | |
fill = color | |
text = text.split(',')[0] | |
x_min, y_min, x_max, y_max = ( | |
obj_box[0] * width, | |
obj_box[1] * height, | |
obj_box[2] * width, | |
obj_box[3] * height, | |
) | |
draw.rectangle( | |
[int(x_min), int(y_min), int(x_max), int(y_max)], | |
outline=fill, | |
width=4, | |
) | |
draw.text((int(x_min), int(y_min)), text, fill=fill, font=font) | |
return pil_img | |
def __call__( | |
self, | |
prompt: List[List[str]] = None, | |
bboxes: List[List[List[float]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
MIGCsteps=20, | |
NaiveFuserSteps=-1, | |
ca_scale=None, | |
ea_scale=None, | |
sac_scale=None, | |
aug_phase_with_and=False, | |
sa_preserve=False, | |
use_sa_preserve=False, | |
clear_set=False, | |
GUI_progress=None | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
token_indices (Union[List[List[List[int]]], List[List[int]]], optional): | |
The list of the indexes in the prompt to layout. Defaults to None. | |
bboxes (Union[List[List[List[float]]], List[List[float]]], optional): | |
The bounding boxes of the indexes to maintain layout in the image. Defaults to None. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
max_guidance_iter (`int`, *optional*, defaults to `10`): | |
The maximum number of iterations for the layout guidance on attention maps in diffusion mode. | |
max_guidance_iter_per_step (`int`, *optional*, defaults to `5`): | |
The maximum number of iterations to run during each time step for layout guidance. | |
scale_factor (`int`, *optional*, defaults to `50`): | |
The scale factor used to update the latents during optimization. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
def aug_phase_with_and_function(phase, instance_num): | |
instance_num = min(instance_num, 7) | |
copy_phase = [phase] * instance_num | |
phase = ', and '.join(copy_phase) | |
return phase | |
if aug_phase_with_and: | |
instance_num = len(prompt[0]) - 1 | |
for i in range(1, len(prompt[0])): | |
prompt[0][i] = aug_phase_with_and_function(prompt[0][i], | |
instance_num) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
prompt_nums = [0] * len(prompt) | |
for i, _ in enumerate(prompt): | |
prompt_nums[i] = len(_) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, cond_prompt_embeds, embeds_pooler = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# print(prompt_embeds.shape) 3 77 768 | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
if clear_set: | |
self.instance_set = set() | |
self.embedding = {} | |
now_set = set() | |
for i in range(len(bboxes[0])): | |
now_set.add((tuple(bboxes[0][i]), prompt[0][i + 1])) | |
mask_set = (now_set | self.instance_set) - (now_set & self.instance_set) | |
self.instance_set = now_set | |
guidance_mask = np.full((4, height // 8, width // 8), 1.0) | |
for bbox, _ in mask_set: | |
w_min = max(0, int(width * bbox[0] // 8) - 5) | |
w_max = min(width, int(width * bbox[2] // 8) + 5) | |
h_min = max(0, int(height * bbox[1] // 8) - 5) | |
h_max = min(height, int(height * bbox[3] // 8) + 5) | |
guidance_mask[:, h_min:h_max, w_min:w_max] = 0 | |
kernal_size = 5 | |
guidance_mask = uniform_filter( | |
guidance_mask, axes = (1, 2), size = kernal_size | |
) | |
guidance_mask = torch.from_numpy(guidance_mask).to(self.device).unsqueeze(0) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if GUI_progress is not None: | |
GUI_progress[0] = int((i + 1) / len(timesteps) * 100) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = ( | |
torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
) | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t | |
) | |
# predict the noise residual | |
cross_attention_kwargs = {'prompt_nums': prompt_nums, | |
'bboxes': bboxes, | |
'ith': i, | |
'embeds_pooler': embeds_pooler, | |
'timestep': t, | |
'height': height, | |
'width': width, | |
'MIGCsteps': MIGCsteps, | |
'NaiveFuserSteps': NaiveFuserSteps, | |
'ca_scale': ca_scale, | |
'ea_scale': ea_scale, | |
'sac_scale': sac_scale, | |
'sa_preserve': sa_preserve, | |
'use_sa_preserve': use_sa_preserve} | |
self.unet.eval() | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
step_output = self.scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs | |
) | |
latents = step_output.prev_sample | |
ori_input = latents.detach().clone() | |
if use_sa_preserve and i in self.embedding: | |
latents = ( | |
latents * (1.0 - guidance_mask) | |
+ torch.from_numpy(self.embedding[i]).to(latents.device) * guidance_mask | |
).float() | |
if sa_preserve: | |
self.embedding[i] = ori_input.cpu().numpy() | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if output_type == "latent": | |
image = latents | |
elif output_type == "pil": | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
image = self.numpy_to_pil(image) | |
else: | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, None) | |
return StableDiffusionPipelineOutput( | |
images=image, nsfw_content_detected=None | |
) |