File size: 5,893 Bytes
c71be5c
08448e8
c71be5c
91b021f
c7a91bb
2398560
c7e3111
74c9f1a
c7e3111
c71be5c
 
 
 
 
0df6c66
c9a3b22
 
 
 
 
c71be5c
08448e8
 
c71be5c
 
 
 
6f9b7ab
60c7d45
 
c71be5c
08448e8
7618247
c71be5c
08448e8
1819fdd
da6beb0
 
aba96da
f61deda
d065dd0
 
 
08448e8
 
 
 
 
b104ce4
08448e8
 
 
 
 
923f344
c9a3b22
dba6b3f
50eff43
aba96da
08448e8
 
 
 
 
c8df060
 
1737537
c8df060
 
74c9f1a
 
 
c8df060
 
 
 
 
 
 
4313a99
233772e
aba96da
cad36dc
aba96da
 
 
f61deda
08448e8
 
 
 
 
 
 
 
25e99e3
 
8d1615a
4313a99
307204c
aaff5ae
 
 
4313a99
1737537
d3db3bd
4313a99
 
d3db3bd
4313a99
 
 
25e99e3
8d1615a
 
 
4466f61
c71be5c
 
 
 
 
 
 
 
 
 
0fa7c3e
 
 
8d1615a
 
 
0fa7c3e
 
c71be5c
 
 
 
 
 
 
966bb6b
c71be5c
 
 
 
 
 
 
 
a1544d7
 
c9a3b22
c71be5c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
import pandas as pd
import torch
import math
import httpcore
import pickle
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
examples=[
    ["Why is men created?"],
    ["Please tell me about superstition!"],
    ["How moses defeat pharaoh?"],
]

def get_detailed_instruct(task_description: str, query: str) -> str:
        return f'Instruct: {task_description}\nQuery: {query}'

def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens = 2048,
    temperature = 0.7,
    top_p = 0.95,
):
    #system role
    messages = [{"role": "system", "content": "You are a sunni moslem bot that always give answer based on quran, hadith, and the companions of prophet Muhammad!"}]

    #make a moslem bot
    messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"})
    messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})

    #adding fatwa references
    '''
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
    encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
    
    task = 'Given a web search query, retrieve relevant passages that answer the query'
    queries = [
        get_detailed_instruct(task, message)
    ]
    examples.append(message)

    query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
    scores = (query_embeddings @ encoded_questions.T) * 100
    selected_references['similarity'] = scores.tolist()[0]
    sorted_references = selected_references.sort_values(by='similarity', ascending=False)
    print(sorted_references.shape[0])
    sorted_references = sorted_references.iloc[:1]
    sorted_references = sorted_references.sort_values(by='similarity', ascending=True)
    print(sorted_references.shape[0])
    print(sorted_references['similarity'].tolist())

    from googletrans import Translator
    translator = Translator()
    
    for index, row in sorted_references.iterrows():
        if(type(row["user"]) is str and type(row['assistant']) is str):
            try:
                translator = Translator()
                print(index)
                print(f'{row["user"]}')
                translated = translator.translate(f'{row["user"]}', src='ar', dest='en')
                print(translated)
                user = translated.text
                print(user)
                #print(row['assistant'])
                assistant = translator.translate(row['assistant']).text
                #print(assistant)
                messages.append({"role": "user", "content":user })
                messages.append({"role": "assistant", "content": assistant})
            except:
                    print("adding fatwa references exception occurred")
    
    #adding more references
    df = pd.read_csv("moslem-bot-reference.csv", sep='|')
    for index, row in df.iterrows():
        messages.append({"role": "user", "content": row['user']})
        messages.append({"role": "assistant", "content": row['assistant']})
    '''
    #history from chat session
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    #latest user question
    from googletrans import Translator
    translator = Translator()
    """
    en_message = ""
    message_language = "en"
    print("===message===")
    print(message)
    print("============")
    try:
        translator = Translator()
        print(translator.detect(message))
        message_language = translator.detect(message).lang
        print(message_language)
        print(translator.translate(message))
        en_message = translator.translate(message).text
    except:
        print("en_message exception occurred")
    messages.append({"role": "user", "content": en_message})
    """
    
    messages.append({"role": "user", "content": message})
    #print(messages)

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        try:
            token = message.choices[0].delta.content
            response += token
            #translated_response = translator.translate(response, src='en', dest=message_language).text
            #yield translated_response
            yield response
        except:
            yield ""

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ], 
    cache_examples="lazy",
    examples=examples,
)

if __name__ == "__main__":
    demo.launch()