Update app.py
Browse files
app.py
CHANGED
@@ -1,140 +1,93 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
import pandas as pd
|
4 |
-
import easyocr
|
5 |
import gradio as gr
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
AutoModelForImageTextToText
|
11 |
-
)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
#
|
17 |
-
config = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
18 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
19 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
20 |
-
model = AutoModelForImageTextToText.from_pretrained(
|
21 |
-
MODEL_ID,
|
22 |
-
config=config,
|
23 |
-
trust_remote_code=True,
|
24 |
-
use_auth_token=HF_TOKEN,
|
25 |
-
load_in_8bit=True,
|
26 |
-
device_map="auto"
|
27 |
-
)
|
28 |
-
device = next(model.parameters()).device
|
29 |
-
|
30 |
-
ocr_reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available(), verbose=False)
|
31 |
-
|
32 |
-
def generate_soap_note(text: str) -> str:
|
33 |
-
prompt = f"""You are a medical AI assistant. Convert these notes into a SOAP note:
|
34 |
-
|
35 |
-
{text}
|
36 |
-
|
37 |
-
Format as:
|
38 |
-
S - SUBJECTIVE:
|
39 |
-
O - OBJECTIVE:
|
40 |
-
A - ASSESSMENT:
|
41 |
-
P - PLAN:
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
out = model.generate(
|
57 |
**inputs,
|
58 |
max_new_tokens=400,
|
59 |
do_sample=True,
|
60 |
-
top_p=0.95,
|
61 |
temperature=0.1,
|
62 |
-
|
63 |
-
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
# 2)
|
68 |
-
docs,
|
69 |
-
for i in range(
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
pd.DataFrame({"
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
})
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
for idx, row in train_df.reset_index(drop=True).iterrows():
|
104 |
-
pred = generate_soap_note(row["doc_note"])
|
105 |
-
train_preds.append(pred)
|
106 |
-
|
107 |
-
inference_df = train_df.reset_index(drop=True).copy()
|
108 |
-
inference_df["id"] = inference_df.index + 1
|
109 |
-
inference_df["predicted_soap"] = train_preds
|
110 |
-
inference_df = inference_df[["id","ground_truth_soap","predicted_soap"]]
|
111 |
-
inference_df.to_csv("outputs/inference.tsv", sep="\t", index=False)
|
112 |
-
|
113 |
-
# 4) Run inference on the 30��row test split and save eval.csv
|
114 |
-
test_preds = []
|
115 |
-
for idx, row in test_df.reset_index(drop=True).iterrows():
|
116 |
-
pred = generate_soap_note(row["doc_note"])
|
117 |
-
test_preds.append(pred)
|
118 |
-
|
119 |
-
eval_df = pd.DataFrame({
|
120 |
-
"id": range(1, len(test_preds) + 1),
|
121 |
-
"predicted_soap": test_preds
|
122 |
-
})
|
123 |
-
eval_df.to_csv("outputs/eval.csv", index=False)
|
124 |
-
|
125 |
-
print("✅ Saved:")
|
126 |
-
print(" outputs/inference.tsv (70 rows: id, ground_truth_soap, predicted_soap)")
|
127 |
-
print(" outputs/eval.csv (30 rows: id, predicted_soap)")
|
128 |
-
|
129 |
-
|
130 |
-
# 3) Blank Gradio UI placeholder
|
131 |
-
def noop():
|
132 |
-
return "Data generated — check TSV files in the repo."
|
133 |
|
134 |
with gr.Blocks() as demo:
|
135 |
-
gr.Markdown("
|
136 |
-
gr.Button("Generate
|
137 |
-
gr.Textbox(
|
|
|
138 |
|
139 |
-
if __name__
|
140 |
-
demo.
|
|
|
1 |
import os
|
|
|
2 |
import pandas as pd
|
|
|
3 |
import gradio as gr
|
4 |
+
from kaggle_secrets import UserSecretsClient
|
5 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoModelForImageTextToText
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
import torch
|
|
|
|
|
8 |
|
9 |
+
HF_TOKEN = UserSecretsClient().get_secret("HF_TOKEN")
|
10 |
+
MODEL_ID = "google/gemma-3n-e2b-it"
|
11 |
|
12 |
+
# Only load small pieces at startup
|
|
|
13 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
14 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_auth_token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
def generate_all_notes():
|
17 |
+
# 1) Load the full 8‑bit model on demand
|
18 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
19 |
+
MODEL_ID,
|
20 |
+
trust_remote_code=True,
|
21 |
+
use_auth_token=HF_TOKEN,
|
22 |
+
load_in_8bit=True,
|
23 |
+
device_map="auto"
|
24 |
+
)
|
25 |
+
device = next(model.parameters()).device
|
26 |
+
|
27 |
+
# helper to turn text→SOAP
|
28 |
+
def to_soap(text):
|
29 |
+
inputs = processor.apply_chat_template(
|
30 |
+
[
|
31 |
+
{"role":"system","content":[{"type":"text","text":"You are a medical AI assistant."}]},
|
32 |
+
{"role":"user", "content":[{"type":"text","text":text}]}
|
33 |
+
],
|
34 |
+
add_generation_prompt=True,
|
35 |
+
tokenize=True,
|
36 |
+
return_tensors="pt",
|
37 |
+
return_dict=True
|
38 |
+
).to(device)
|
39 |
out = model.generate(
|
40 |
**inputs,
|
41 |
max_new_tokens=400,
|
42 |
do_sample=True,
|
|
|
43 |
temperature=0.1,
|
44 |
+
top_p=0.95,
|
45 |
+
pad_token_id=processor.tokenizer.eos_token_id
|
46 |
)
|
47 |
+
return processor.batch_decode(out[:, inputs["input_ids"].shape[-1]:], skip_special_tokens=True)[0].strip()
|
48 |
+
|
49 |
+
# 2) Generate 100 raw docs + ground truths
|
50 |
+
docs, gts = [], []
|
51 |
+
for i in range(100):
|
52 |
+
doc = to_soap("Generate a realistic, concise doctor's progress note for a single patient encounter.")
|
53 |
+
docs.append(doc)
|
54 |
+
gts.append(to_soap(doc))
|
55 |
+
if (i+1) % 20 == 0:
|
56 |
+
torch.cuda.empty_cache()
|
57 |
+
|
58 |
+
# 3) Split 70/30
|
59 |
+
full_df = pd.DataFrame({"doc_note": docs, "ground_truth_soap": gts})
|
60 |
+
train_df, test_df = train_test_split(full_df, test_size=0.3, random_state=42)
|
61 |
+
|
62 |
+
os.makedirs("outputs", exist_ok=True)
|
63 |
+
|
64 |
+
# 4) Inference on train split → inference.tsv
|
65 |
+
train_preds = [to_soap(d) for d in train_df["doc_note"]]
|
66 |
+
inf = train_df.reset_index(drop=True).copy()
|
67 |
+
inf["id"] = inf.index + 1
|
68 |
+
inf["predicted_soap"] = train_preds
|
69 |
+
inf[["id","ground_truth_soap","predicted_soap"]].to_csv(
|
70 |
+
"outputs/inference.tsv", sep="\t", index=False
|
71 |
+
)
|
72 |
+
|
73 |
+
# 5) Inference on test split → eval.csv
|
74 |
+
test_preds = [to_soap(d) for d in test_df["doc_note"]]
|
75 |
+
pd.DataFrame({
|
76 |
+
"id": range(1, len(test_preds)+1),
|
77 |
+
"predicted_soap": test_preds
|
78 |
+
}).to_csv("outputs/eval.csv", index=False)
|
79 |
+
|
80 |
+
return (
|
81 |
+
"✅ Done!\n"
|
82 |
+
f"– outputs/inference.tsv (70 rows with id, GT & pred)\n"
|
83 |
+
f"– outputs/eval.csv (30 rows with id & pred)"
|
84 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
with gr.Blocks() as demo:
|
87 |
+
gr.Markdown("## Gemma‑3n SOAP Generator")
|
88 |
+
btn = gr.Button("Generate 100 → split 70/30 → inference & eval")
|
89 |
+
out = gr.Textbox(interactive=False, label="Status")
|
90 |
+
btn.click(fn=generate_all_notes, inputs=None, outputs=out)
|
91 |
|
92 |
+
if __name__=="__main__":
|
93 |
+
demo.launch()
|