Vec2Face / pixel_generator /vec2face /model_vec2face.py
Haiyu Wu
update
e1eebbb
from functools import partial
import torch
import torch.nn as nn
import torch.optim as optim
from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp
from omegaconf import OmegaConf
import numpy as np
import scipy.stats as stats
from pixel_generator.vec2face.im_decoder import Decoder
from sixdrepnet.model import utils
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale
attn = attn - torch.max(attn, dim=-1, keepdim=True)[0]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, return_attention=False):
with torch.cuda.amp.autocast(enabled=False):
if return_attention:
_, attn = self.attn(self.norm1(x))
return attn
else:
y, _ = self.attn(self.norm1(x))
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LabelSmoothingCrossEntropy(nn.Module):
""" NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1):
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, hidden_size, max_position_embeddings, dropout=0.1):
super().__init__()
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6)
self.dropout = nn.Dropout(dropout)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1)))
torch.nn.init.normal_(self.position_embeddings.weight, std=.02)
def forward(
self, input_ids
):
input_shape = input_ids.size()
seq_length = input_shape[1]
position_ids = self.position_ids[:, :seq_length]
position_embeddings = self.position_embeddings(position_ids)
embeddings = input_ids + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MaskedGenerativeEncoderViT(nn.Module):
""" Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=112, patch_size=7, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25,
use_rep=True, rep_dim=512,
rep_drop_prob=0.0,
use_class_label=False):
super().__init__()
assert not (use_rep and use_class_label)
# --------------------------------------------------------------------------
vqgan_config = OmegaConf.load('configs/vec2face/vqgan.yaml').model
self.token_emb = BertEmbeddings(hidden_size=embed_dim,
max_position_embeddings=49 + 1,
dropout=0.1)
self.use_rep = use_rep
self.use_class_label = use_class_label
if self.use_rep:
print("Use representation as condition!")
self.latent_prior_proj_f = nn.Linear(rep_dim, embed_dim, bias=True)
# CFG config
self.rep_drop_prob = rep_drop_prob
self.feature_token = nn.Linear(1, 49, bias=True)
self.center_token = nn.Linear(embed_dim, 49, bias=True)
self.im_decoder = Decoder(**vqgan_config.params.ddconfig)
self.im_decoder_proj = nn.Linear(embed_dim, vqgan_config.params.ddconfig.z_channels)
# Vec2Face variant masking ratio
self.mask_ratio_min = mask_ratio_min
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std,
(mask_ratio_max - mask_ratio_mu) / mask_ratio_std,
loc=mask_ratio_mu, scale=mask_ratio_std)
# --------------------------------------------------------------------------
# Vec2Face encoder specifics
dropout_rate = 0.1
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# --------------------------------------------------------------------------
# Vec2Face decoder specifics
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
self.pad_with_cls_token = True
self.decoder_pos_embed_learned = nn.Parameter(
torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=True) # learnable pos embedding
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer,
drop=dropout_rate, attn_drop=dropout_rate)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
# --------------------------------------------------------------------------
self.initialize_weights()
def initialize_weights(self):
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02)
torch.nn.init.xavier_uniform_(self.feature_token.weight)
torch.nn.init.xavier_uniform_(self.center_token.weight)
torch.nn.init.xavier_uniform_(self.latent_prior_proj_f.weight)
torch.nn.init.xavier_uniform_(self.decoder_embed.weight)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_encoder(self, rep):
# expand to feature map
device = rep.device
encode_feature = self.latent_prior_proj_f(rep)
feature_token = self.feature_token(encode_feature.unsqueeze(-1)).permute(0, 2, 1)
gt_indices = torch.cat((encode_feature.unsqueeze(1), feature_token), dim=1).clone().detach()
# masked row indices
bsz, seq_len, _ = feature_token.size()
mask_ratio_min = self.mask_ratio_min
mask_rate = self.mask_ratio_generator.rvs(1)[0]
num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min))
num_masked_tokens = int(np.ceil(seq_len * mask_rate))
# it is possible that two elements of the noise is the same, so do a while loop to avoid it
while True:
noise = torch.rand(bsz, seq_len, device=rep.device) # noise in [0, 1]
sorted_noise, _ = torch.sort(noise, dim=1) # ascend: small is remove, large is keep
cutoff_drop = sorted_noise[:, num_dropped_tokens - 1:num_dropped_tokens]
cutoff_mask = sorted_noise[:, num_masked_tokens - 1:num_masked_tokens]
token_drop_mask = (noise <= cutoff_drop).float()
token_all_mask = (noise <= cutoff_mask).float()
if token_drop_mask.sum() == bsz * num_dropped_tokens and \
token_all_mask.sum() == bsz * num_masked_tokens:
break
else:
print("Rerandom the noise!")
token_all_mask_bool = token_all_mask.bool()
encode_feature_expanded = encode_feature.unsqueeze(1).expand(-1, feature_token.shape[1], -1)
feature_token[token_all_mask_bool] = encode_feature_expanded[token_all_mask_bool]
# concatenate with image feature
feature_token = torch.cat([encode_feature.unsqueeze(1), feature_token], dim=1)
token_drop_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_drop_mask], dim=1)
token_all_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_all_mask], dim=1)
# bert embedding
input_embeddings = self.token_emb(feature_token)
bsz, seq_len, emb_dim = input_embeddings.shape
# dropping
token_keep_mask = 1 - token_drop_mask
input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim)
# apply Transformer blocks
x = input_embeddings_after_drop
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x, gt_indices, token_drop_mask, token_all_mask
def forward_decoder(self, x, token_drop_mask, token_all_mask):
# embed incomplete feature map
x = self.decoder_embed(x)
# fill masked positions with image feature
mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1)
x_after_pad = mask_tokens.clone()
x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2])
x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad)
# add pos embed
x = x_after_pad + self.decoder_pos_embed_learned
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
logits = self.decoder_norm(x)
bsz, _, emb_dim = logits.shape
# an image decoder
decoder_proj = self.im_decoder_proj(logits[:, 1:, :].reshape(bsz, 7, 7, emb_dim)).permute(0, 3, 1, 2)
return decoder_proj, logits
def get_last_layer(self):
return self.im_decoder.conv_out.weight
def forward(self, rep):
last_layer = self.get_last_layer()
latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(rep)
decoder_proj, logits = self.forward_decoder(latent, token_drop_mask, token_all_mask)
image = self.im_decoder(decoder_proj)
return gt_indices, logits, image, last_layer, token_all_mask
def gen_image(self, rep, quality_model, fr_model, pose_model=None, age_model=None, class_rep=None,
num_iter=1, lr=1e-1, q_target=27, pose=60):
rep_copy = rep.clone().detach().requires_grad_(True)
optm = optim.Adam([rep_copy], lr=lr)
i = 0
while i < num_iter:
latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy)
decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask)
image = self.im_decoder(decoder_proj).clip(max=1., min=-1.)
# feature comparison
out_feature = fr_model(image)
if class_rep is None:
id_loss = torch.mean(1 - torch.cosine_similarity(out_feature, rep))
else:
distance = 1 - torch.cosine_similarity(out_feature, class_rep)
id_loss = torch.mean(torch.where(distance > 0., distance, torch.zeros_like(distance)))
quality = quality_model(image)
norm = torch.norm(quality, 2, 1, True)
q_loss = torch.where(norm < q_target, q_target - norm, torch.zeros_like(norm))
pose_loss = 0
if pose_model is not None:
# sixdrepnet
bgr_img = image[:, [2, 1, 0], :, :]
pose_info = pose_model(((bgr_img + 1) / 2))
pose_info = utils.compute_euler_angles_from_rotation_matrices(
pose_info) * 180 / np.pi
yaw_loss = torch.abs(pose - torch.abs(pose_info[:, 1].clip(min=-90, max=90)))
pose_loss = torch.mean(yaw_loss)
q_loss = torch.mean(q_loss)
if pose_loss > 5 or id_loss > 0.3 or q_loss > 1:
i -= 1
loss = id_loss * 100 + q_loss + pose_loss
optm.zero_grad()
loss.backward(retain_graph=True)
optm.step()
i += 1
latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy)
decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask)
image = self.im_decoder(decoder_proj).clip(max=1., min=-1.)
return image, rep_copy.detach()
def vec2face_vit_base_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vec2face_vit_large_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def vec2face_vit_huge_patch16(**kwargs):
model = MaskedGenerativeEncoderViT(
patch_size=16, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=1280, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model