|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from timm.models.vision_transformer import PatchEmbed, DropPath, Mlp |
|
from omegaconf import OmegaConf |
|
import numpy as np |
|
import scipy.stats as stats |
|
from pixel_generator.vec2face.im_decoder import Decoder |
|
from sixdrepnet.model import utils |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
attn = (q.float() @ k.float().transpose(-2, -1)) * self.scale |
|
attn = attn - torch.max(attn, dim=-1, keepdim=True)[0] |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x, attn |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x, return_attention=False): |
|
with torch.cuda.amp.autocast(enabled=False): |
|
if return_attention: |
|
_, attn = self.attn(self.norm1(x)) |
|
return attn |
|
else: |
|
y, _ = self.attn(self.norm1(x)) |
|
x = x + self.drop_path(y) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class LabelSmoothingCrossEntropy(nn.Module): |
|
""" NLL loss with label smoothing. |
|
""" |
|
|
|
def __init__(self, smoothing=0.1): |
|
super(LabelSmoothingCrossEntropy, self).__init__() |
|
assert smoothing < 1.0 |
|
self.smoothing = smoothing |
|
self.confidence = 1. - smoothing |
|
|
|
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: |
|
logprobs = torch.nn.functional.log_softmax(x, dim=-1) |
|
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) |
|
nll_loss = nll_loss.squeeze(1) |
|
smooth_loss = -logprobs.mean(dim=-1) |
|
loss = self.confidence * nll_loss + self.smoothing * smooth_loss |
|
return loss |
|
|
|
|
|
class BertEmbeddings(nn.Module): |
|
"""Construct the embeddings from word, position and token_type embeddings.""" |
|
|
|
def __init__(self, hidden_size, max_position_embeddings, dropout=0.1): |
|
super().__init__() |
|
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) |
|
|
|
|
|
|
|
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-6) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.register_buffer("position_ids", torch.arange(max_position_embeddings).expand((1, -1))) |
|
|
|
torch.nn.init.normal_(self.position_embeddings.weight, std=.02) |
|
|
|
def forward( |
|
self, input_ids |
|
): |
|
input_shape = input_ids.size() |
|
|
|
seq_length = input_shape[1] |
|
|
|
position_ids = self.position_ids[:, :seq_length] |
|
|
|
position_embeddings = self.position_embeddings(position_ids) |
|
embeddings = input_ids + position_embeddings |
|
|
|
embeddings = self.LayerNorm(embeddings) |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class MaskedGenerativeEncoderViT(nn.Module): |
|
""" Masked Autoencoder with VisionTransformer backbone |
|
""" |
|
|
|
def __init__(self, img_size=112, patch_size=7, in_chans=3, |
|
embed_dim=1024, depth=24, num_heads=16, |
|
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False, |
|
mask_ratio_min=0.5, mask_ratio_max=1.0, mask_ratio_mu=0.55, mask_ratio_std=0.25, |
|
use_rep=True, rep_dim=512, |
|
rep_drop_prob=0.0, |
|
use_class_label=False): |
|
super().__init__() |
|
assert not (use_rep and use_class_label) |
|
|
|
|
|
vqgan_config = OmegaConf.load('configs/vec2face/vqgan.yaml').model |
|
self.token_emb = BertEmbeddings(hidden_size=embed_dim, |
|
max_position_embeddings=49 + 1, |
|
dropout=0.1) |
|
self.use_rep = use_rep |
|
self.use_class_label = use_class_label |
|
if self.use_rep: |
|
print("Use representation as condition!") |
|
self.latent_prior_proj_f = nn.Linear(rep_dim, embed_dim, bias=True) |
|
|
|
self.rep_drop_prob = rep_drop_prob |
|
self.feature_token = nn.Linear(1, 49, bias=True) |
|
self.center_token = nn.Linear(embed_dim, 49, bias=True) |
|
self.im_decoder = Decoder(**vqgan_config.params.ddconfig) |
|
self.im_decoder_proj = nn.Linear(embed_dim, vqgan_config.params.ddconfig.z_channels) |
|
|
|
|
|
self.mask_ratio_min = mask_ratio_min |
|
self.mask_ratio_generator = stats.truncnorm((mask_ratio_min - mask_ratio_mu) / mask_ratio_std, |
|
(mask_ratio_max - mask_ratio_mu) / mask_ratio_std, |
|
loc=mask_ratio_mu, scale=mask_ratio_std) |
|
|
|
|
|
dropout_rate = 0.1 |
|
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.blocks = nn.ModuleList([ |
|
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer, |
|
drop=dropout_rate, attn_drop=dropout_rate) |
|
for i in range(depth)]) |
|
self.norm = norm_layer(embed_dim) |
|
|
|
|
|
|
|
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True) |
|
self.pad_with_cls_token = True |
|
|
|
self.decoder_pos_embed_learned = nn.Parameter( |
|
torch.zeros(1, num_patches + 1, decoder_embed_dim), requires_grad=True) |
|
|
|
self.decoder_blocks = nn.ModuleList([ |
|
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio, qkv_bias=True, qk_scale=None, norm_layer=norm_layer, |
|
drop=dropout_rate, attn_drop=dropout_rate) |
|
for i in range(decoder_depth)]) |
|
|
|
self.decoder_norm = norm_layer(decoder_embed_dim) |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
w = self.patch_embed.proj.weight.data |
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
torch.nn.init.normal_(self.decoder_pos_embed_learned, std=.02) |
|
torch.nn.init.xavier_uniform_(self.feature_token.weight) |
|
torch.nn.init.xavier_uniform_(self.center_token.weight) |
|
torch.nn.init.xavier_uniform_(self.latent_prior_proj_f.weight) |
|
torch.nn.init.xavier_uniform_(self.decoder_embed.weight) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
|
|
torch.nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward_encoder(self, rep): |
|
|
|
device = rep.device |
|
encode_feature = self.latent_prior_proj_f(rep) |
|
feature_token = self.feature_token(encode_feature.unsqueeze(-1)).permute(0, 2, 1) |
|
|
|
gt_indices = torch.cat((encode_feature.unsqueeze(1), feature_token), dim=1).clone().detach() |
|
|
|
|
|
bsz, seq_len, _ = feature_token.size() |
|
mask_ratio_min = self.mask_ratio_min |
|
mask_rate = self.mask_ratio_generator.rvs(1)[0] |
|
|
|
num_dropped_tokens = int(np.ceil(seq_len * mask_ratio_min)) |
|
num_masked_tokens = int(np.ceil(seq_len * mask_rate)) |
|
|
|
|
|
while True: |
|
noise = torch.rand(bsz, seq_len, device=rep.device) |
|
sorted_noise, _ = torch.sort(noise, dim=1) |
|
cutoff_drop = sorted_noise[:, num_dropped_tokens - 1:num_dropped_tokens] |
|
cutoff_mask = sorted_noise[:, num_masked_tokens - 1:num_masked_tokens] |
|
token_drop_mask = (noise <= cutoff_drop).float() |
|
token_all_mask = (noise <= cutoff_mask).float() |
|
if token_drop_mask.sum() == bsz * num_dropped_tokens and \ |
|
token_all_mask.sum() == bsz * num_masked_tokens: |
|
break |
|
else: |
|
print("Rerandom the noise!") |
|
token_all_mask_bool = token_all_mask.bool() |
|
encode_feature_expanded = encode_feature.unsqueeze(1).expand(-1, feature_token.shape[1], -1) |
|
feature_token[token_all_mask_bool] = encode_feature_expanded[token_all_mask_bool] |
|
|
|
|
|
feature_token = torch.cat([encode_feature.unsqueeze(1), feature_token], dim=1) |
|
token_drop_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_drop_mask], dim=1) |
|
token_all_mask = torch.cat([torch.zeros(feature_token.size(0), 1).to(device), token_all_mask], dim=1) |
|
|
|
|
|
input_embeddings = self.token_emb(feature_token) |
|
|
|
bsz, seq_len, emb_dim = input_embeddings.shape |
|
|
|
|
|
token_keep_mask = 1 - token_drop_mask |
|
input_embeddings_after_drop = input_embeddings[token_keep_mask.nonzero(as_tuple=True)].reshape(bsz, -1, emb_dim) |
|
|
|
|
|
x = input_embeddings_after_drop |
|
for blk in self.blocks: |
|
x = blk(x) |
|
x = self.norm(x) |
|
return x, gt_indices, token_drop_mask, token_all_mask |
|
|
|
def forward_decoder(self, x, token_drop_mask, token_all_mask): |
|
|
|
x = self.decoder_embed(x) |
|
|
|
mask_tokens = x[:, 0:1].repeat(1, token_all_mask.shape[1], 1) |
|
x_after_pad = mask_tokens.clone() |
|
x_after_pad[(1 - token_drop_mask).nonzero(as_tuple=True)] = x.reshape(x.shape[0] * x.shape[1], x.shape[2]) |
|
x_after_pad = torch.where(token_all_mask.unsqueeze(-1).bool(), mask_tokens, x_after_pad) |
|
|
|
x = x_after_pad + self.decoder_pos_embed_learned |
|
|
|
|
|
for blk in self.decoder_blocks: |
|
x = blk(x) |
|
|
|
logits = self.decoder_norm(x) |
|
bsz, _, emb_dim = logits.shape |
|
|
|
decoder_proj = self.im_decoder_proj(logits[:, 1:, :].reshape(bsz, 7, 7, emb_dim)).permute(0, 3, 1, 2) |
|
return decoder_proj, logits |
|
|
|
def get_last_layer(self): |
|
return self.im_decoder.conv_out.weight |
|
|
|
def forward(self, rep): |
|
last_layer = self.get_last_layer() |
|
latent, gt_indices, token_drop_mask, token_all_mask = self.forward_encoder(rep) |
|
decoder_proj, logits = self.forward_decoder(latent, token_drop_mask, token_all_mask) |
|
image = self.im_decoder(decoder_proj) |
|
|
|
return gt_indices, logits, image, last_layer, token_all_mask |
|
|
|
def gen_image(self, rep, quality_model, fr_model, pose_model=None, age_model=None, class_rep=None, |
|
num_iter=1, lr=1e-1, q_target=27, pose=60): |
|
rep_copy = rep.clone().detach().requires_grad_(True) |
|
optm = optim.Adam([rep_copy], lr=lr) |
|
|
|
i = 0 |
|
while i < num_iter: |
|
latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy) |
|
decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask) |
|
image = self.im_decoder(decoder_proj).clip(max=1., min=-1.) |
|
|
|
out_feature = fr_model(image) |
|
if class_rep is None: |
|
id_loss = torch.mean(1 - torch.cosine_similarity(out_feature, rep)) |
|
else: |
|
distance = 1 - torch.cosine_similarity(out_feature, class_rep) |
|
id_loss = torch.mean(torch.where(distance > 0., distance, torch.zeros_like(distance))) |
|
quality = quality_model(image) |
|
norm = torch.norm(quality, 2, 1, True) |
|
q_loss = torch.where(norm < q_target, q_target - norm, torch.zeros_like(norm)) |
|
|
|
pose_loss = 0 |
|
if pose_model is not None: |
|
|
|
bgr_img = image[:, [2, 1, 0], :, :] |
|
pose_info = pose_model(((bgr_img + 1) / 2)) |
|
pose_info = utils.compute_euler_angles_from_rotation_matrices( |
|
pose_info) * 180 / np.pi |
|
yaw_loss = torch.abs(pose - torch.abs(pose_info[:, 1].clip(min=-90, max=90))) |
|
pose_loss = torch.mean(yaw_loss) |
|
q_loss = torch.mean(q_loss) |
|
if pose_loss > 5 or id_loss > 0.3 or q_loss > 1: |
|
i -= 1 |
|
loss = id_loss * 100 + q_loss + pose_loss |
|
optm.zero_grad() |
|
loss.backward(retain_graph=True) |
|
optm.step() |
|
i += 1 |
|
|
|
latent, _, token_drop_mask, token_all_mask = self.forward_encoder(rep_copy) |
|
decoder_proj, _ = self.forward_decoder(latent, token_drop_mask, token_all_mask) |
|
image = self.im_decoder(decoder_proj).clip(max=1., min=-1.) |
|
|
|
return image, rep_copy.detach() |
|
|
|
|
|
def vec2face_vit_base_patch16(**kwargs): |
|
model = MaskedGenerativeEncoderViT( |
|
patch_size=16, embed_dim=768, depth=12, num_heads=12, |
|
decoder_embed_dim=768, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
def vec2face_vit_large_patch16(**kwargs): |
|
model = MaskedGenerativeEncoderViT( |
|
patch_size=16, embed_dim=1024, depth=24, num_heads=16, |
|
decoder_embed_dim=1024, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|
|
|
|
def vec2face_vit_huge_patch16(**kwargs): |
|
model = MaskedGenerativeEncoderViT( |
|
patch_size=16, embed_dim=1280, depth=32, num_heads=16, |
|
decoder_embed_dim=1280, decoder_depth=8, decoder_num_heads=16, |
|
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) |
|
return model |
|
|