csm-1b / app.py
Bradarr's picture
Update app.py
6989477 verified
raw
history blame
9.87 kB
import os
import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from generator import Segment, load_csm_1b # We'll use load_csm_1b *later*
from huggingface_hub import hf_hub_download, login, HfApi
from watermarking import watermark
import whisper # We'll use whisper.load_model *later*
from transformers import AutoTokenizer, AutoModelForCausalLM # We'll use these *later*
import logging
from transformers import GenerationConfig
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Authentication and Configuration ---
try:
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN not found in environment variables.")
login(token=api_key)
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
if not CSM_1B_HF_WATERMARK:
raise ValueError("WATERMARK_KEY not found or invalid in environment variables.")
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 120))
except (ValueError, TypeError) as e:
logging.error(f"Configuration error: {e}")
raise
SPACE_INTRO_TEXT = """
# Sesame CSM 1B - Conversational Demo
This demo allows you to have a conversation with Sesame CSM 1B, leveraging Whisper for speech-to-text and Gemma for generating responses. This is an experimental integration and may require significant resources.
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
"""
# --- Constants ---
SPEAKER_ID = 0
MAX_CONTEXT_SEGMENTS = 3
MAX_GEMMA_LENGTH = 128
# --- Global Conversation History ---
conversation_history = []
# --- Model Downloading (PRE-DOWNLOAD, NO LOADING) ---
# 1. Download Sesame CSM 1B
csm_1b_model_path = "csm_1b_ckpt.pt" # Local path for the downloaded model
try:
if not os.path.exists(csm_1b_model_path):
hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt", local_dir=".", local_dir_use_symlinks=False)
os.rename("ckpt.pt", csm_1b_model_path)
logging.info("Sesame CSM 1B model downloaded.")
else:
logging.info("Sesame CSM 1B model already downloaded.")
except Exception as e:
logging.error(f"Error downloading Sesame CSM 1B: {e}")
raise
# 2. Download Whisper (using hf_hub_download for consistency)
whisper_model_name = "small.en"
whisper_local_dir = "whisper_model" # Local directory for Whisper
try:
if not os.path.exists(whisper_local_dir):
os.makedirs(whisper_local_dir, exist_ok=True) #Create if not exist
#Whisper uses a specific download method. This command should pre download everything needed
whisper.load_model(whisper_model_name, download_root=whisper_local_dir)
else:
logging.info("Whisper model already downloaded.")
except Exception as e:
logging.error(f"Whisper model download failed with exception: {e}")
# 3. Download Gemma 3 1B (using hf_hub_download, individual files)
gemma_repo_id = "google/gemma-3-1b-it"
gemma_local_path = os.path.abspath("gemma_model") # Absolute path
try:
if not os.path.exists(gemma_local_path):
os.makedirs(gemma_local_path, exist_ok=True) # Create the directory
api = HfApi()
# List all files in the repository
repo_files = api.list_repo_files(gemma_repo_id)
# Download each file individually
for file in repo_files:
hf_hub_download(
repo_id=gemma_repo_id,
filename=file,
local_dir=gemma_local_path,
local_dir_use_symlinks=False, # Ensure files are copied, not linked
)
logging.info("Gemma 3 1B model and tokenizer files downloaded.")
else:
logging.info("Gemma 3 1B model and tokenizer files already downloaded.")
except Exception as e:
logging.error(f"Error downloading Gemma 3 1B: {e}")
raise
# --- Helper Functions ---
def transcribe_audio(audio_path: str, whisper_model) -> str:
try:
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
result = whisper_model.transcribe(audio)
return result["text"]
except Exception as e:
logging.error(f"Whisper transcription error: {e}")
return "Error: Could not transcribe audio."
def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str:
try:
messages = [{"role": "user", "content": text}]
input = tokenizer_gemma.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device)
generation_config = GenerationConfig(
max_new_tokens=MAX_GEMMA_LENGTH,
early_stopping=True,
)
generated_output = model_gemma.generate(input, generation_config=generation_config)
decoded_output = tokenizer_gemma.decode(generated_output[0], skip_special_tokens=False)
start_token = "<start_of_turn>model"
end_token = "<end_of_turn>"
start_index = decoded_output.find(start_token)
if start_index != -1:
start_index += len(start_token)
end_index = decoded_output.find(end_token, start_index)
assistant_response = decoded_output[start_index:].strip()
return assistant_response
return decoded_output
except Exception as e:
logging.error(f"Gemma response generation error: {e}")
return "I'm sorry, I encountered an error generating a response."
def load_audio(audio_path: str, generator) -> torch.Tensor:
try:
audio_tensor, sample_rate = torchaudio.load(audio_path)
audio_tensor = audio_tensor.mean(dim=0)
if sample_rate != generator.sample_rate:
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=generator.sample_rate)
return audio_tensor
except Exception as e:
logging.error(f"Audio loading error: {e}")
raise gr.Error("Could not load or process the audio file.") from e
def clear_history():
global conversation_history
conversation_history = []
logging.info("Conversation history cleared.")
return "Conversation history cleared."
# --- Main Inference Function ---
@spaces.GPU(duration=gpu_timeout) # GPU decorator
def infer(user_audio) -> tuple[int, np.ndarray]:
if torch.cuda.is_available():
device = "cuda"
logging.info(f"CUDA is available! Using device: {torch.cuda.get_device_name(0)}")
else:
device = "cpu"
logging.info("CUDA is NOT available. Using CPU.")
try:
# --- Model Loading (ONLY inside infer, after GPU is available) ---
generator = load_csm_1b(csm_1b_model_path, device)
logging.info("Sesame CSM 1B loaded successfully.")
whisper_model = whisper.load_model(whisper_model_name, device=device, download_root=whisper_local_dir)
logging.info(f"Whisper model '{whisper_model_name}' loaded successfully.")
tokenizer_gemma = AutoTokenizer.from_pretrained(gemma_local_path)
model_gemma = AutoModelForCausalLM.from_pretrained(gemma_local_path).to(device)
logging.info("Gemma 3 1B pt model loaded successfully.")
if not user_audio:
raise ValueError("No audio input received.")
return _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device)
except Exception as e:
logging.exception(f"Inference error: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
def _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device) -> tuple[int, np.ndarray]:
global conversation_history
try:
user_text = transcribe_audio(user_audio, whisper_model)
logging.info(f"User: {user_text}")
ai_text = generate_response(user_text, model_gemma, tokenizer_gemma, device)
logging.info(f"AI: {ai_text}")
try:
ai_audio = generator.generate(
text=ai_text,
speaker=SPEAKER_ID,
context=conversation_history,
max_audio_length_ms=10_000,
)
logging.info("Audio generated successfully.")
except Exception as e:
logging.error(f"Sesame response generation error: {e}")
raise gr.Error(f"Sesame response generation error: {e}")
user_segment = Segment(speaker = 1, text = user_text, audio = load_audio(user_audio, generator))
ai_segment = Segment(speaker = SPEAKER_ID, text = ai_text, audio = ai_audio)
conversation_history.append(user_segment)
conversation_history.append(ai_segment)
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
conversation_history.pop(0)
audio_tensor, wm_sample_rate = watermark(
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
)
audio_tensor = torchaudio.functional.resample(
audio_tensor, orig_freq=wm_sample_rate, new_freq=generator.sample_rate
)
ai_audio_array = (audio_tensor * 32768).to(torch.int16).cpu().numpy()
return generator.sample_rate, ai_audio_array
except Exception as e:
logging.exception(f"Error in _infer: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
# --- Gradio Interface ---
with gr.Blocks() as app:
gr.Markdown(SPACE_INTRO_TEXT)
audio_input = gr.Audio(label="Your Input", type="filepath")
audio_output = gr.Audio(label="AI Response")
clear_button = gr.Button("Clear Conversation History")
status_display = gr.Textbox(label="Status", visible=False)
btn = gr.Button("Generate Response")
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
clear_button.click(clear_history, outputs=[status_display])
app.launch(ssr_mode=False)