File size: 9,870 Bytes
96dc011 6989477 96dc011 6989477 09bb564 107a152 96dc011 09bb564 2147e35 96dc011 2e50dda 09bb564 96dc011 09bb564 96dc011 73cb637 09bb564 0219bf8 96dc011 cc8bd68 09bb564 96dc011 cc8bd68 96dc011 cc8bd68 96dc011 2e50dda cc8bd68 da6d075 09bb564 cc8bd68 09bb564 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda 6989477 2e50dda cc8bd68 0219bf8 6989477 09bb564 cc8bd68 09bb564 cc8bd68 721e588 96dc011 6989477 09bb564 93d52a2 da6d075 93d52a2 512b6c2 6989477 09bb564 721e588 09bb564 6989477 09bb564 cc8bd68 09bb564 721e588 09bb564 cc8bd68 0219bf8 6989477 cc8bd68 2e50dda cc8bd68 6989477 721e588 d794e1d 6989477 2e50dda cc8bd68 6989477 2e50dda cc8bd68 2e50dda cc8bd68 09bb564 6989477 09bb564 721e588 09bb564 96dc011 cc8bd68 721e588 96dc011 09bb564 6989477 09bb564 6989477 09bb564 cc8bd68 73cb637 cc8bd68 09bb564 cc8bd68 6989477 93d52a2 09bb564 96dc011 09bb564 96dc011 09bb564 96dc011 09bb564 96dc011 cc8bd68 0219bf8 96dc011 48078de 09bb564 96dc011 09bb564 721e588 96dc011 cc8bd68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from generator import Segment, load_csm_1b # We'll use load_csm_1b *later*
from huggingface_hub import hf_hub_download, login, HfApi
from watermarking import watermark
import whisper # We'll use whisper.load_model *later*
from transformers import AutoTokenizer, AutoModelForCausalLM # We'll use these *later*
import logging
from transformers import GenerationConfig
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Authentication and Configuration ---
try:
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN not found in environment variables.")
login(token=api_key)
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
if not CSM_1B_HF_WATERMARK:
raise ValueError("WATERMARK_KEY not found or invalid in environment variables.")
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 120))
except (ValueError, TypeError) as e:
logging.error(f"Configuration error: {e}")
raise
SPACE_INTRO_TEXT = """
# Sesame CSM 1B - Conversational Demo
This demo allows you to have a conversation with Sesame CSM 1B, leveraging Whisper for speech-to-text and Gemma for generating responses. This is an experimental integration and may require significant resources.
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
"""
# --- Constants ---
SPEAKER_ID = 0
MAX_CONTEXT_SEGMENTS = 3
MAX_GEMMA_LENGTH = 128
# --- Global Conversation History ---
conversation_history = []
# --- Model Downloading (PRE-DOWNLOAD, NO LOADING) ---
# 1. Download Sesame CSM 1B
csm_1b_model_path = "csm_1b_ckpt.pt" # Local path for the downloaded model
try:
if not os.path.exists(csm_1b_model_path):
hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt", local_dir=".", local_dir_use_symlinks=False)
os.rename("ckpt.pt", csm_1b_model_path)
logging.info("Sesame CSM 1B model downloaded.")
else:
logging.info("Sesame CSM 1B model already downloaded.")
except Exception as e:
logging.error(f"Error downloading Sesame CSM 1B: {e}")
raise
# 2. Download Whisper (using hf_hub_download for consistency)
whisper_model_name = "small.en"
whisper_local_dir = "whisper_model" # Local directory for Whisper
try:
if not os.path.exists(whisper_local_dir):
os.makedirs(whisper_local_dir, exist_ok=True) #Create if not exist
#Whisper uses a specific download method. This command should pre download everything needed
whisper.load_model(whisper_model_name, download_root=whisper_local_dir)
else:
logging.info("Whisper model already downloaded.")
except Exception as e:
logging.error(f"Whisper model download failed with exception: {e}")
# 3. Download Gemma 3 1B (using hf_hub_download, individual files)
gemma_repo_id = "google/gemma-3-1b-it"
gemma_local_path = os.path.abspath("gemma_model") # Absolute path
try:
if not os.path.exists(gemma_local_path):
os.makedirs(gemma_local_path, exist_ok=True) # Create the directory
api = HfApi()
# List all files in the repository
repo_files = api.list_repo_files(gemma_repo_id)
# Download each file individually
for file in repo_files:
hf_hub_download(
repo_id=gemma_repo_id,
filename=file,
local_dir=gemma_local_path,
local_dir_use_symlinks=False, # Ensure files are copied, not linked
)
logging.info("Gemma 3 1B model and tokenizer files downloaded.")
else:
logging.info("Gemma 3 1B model and tokenizer files already downloaded.")
except Exception as e:
logging.error(f"Error downloading Gemma 3 1B: {e}")
raise
# --- Helper Functions ---
def transcribe_audio(audio_path: str, whisper_model) -> str:
try:
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
result = whisper_model.transcribe(audio)
return result["text"]
except Exception as e:
logging.error(f"Whisper transcription error: {e}")
return "Error: Could not transcribe audio."
def generate_response(text: str, model_gemma, tokenizer_gemma, device) -> str:
try:
messages = [{"role": "user", "content": text}]
input = tokenizer_gemma.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(device)
generation_config = GenerationConfig(
max_new_tokens=MAX_GEMMA_LENGTH,
early_stopping=True,
)
generated_output = model_gemma.generate(input, generation_config=generation_config)
decoded_output = tokenizer_gemma.decode(generated_output[0], skip_special_tokens=False)
start_token = "<start_of_turn>model"
end_token = "<end_of_turn>"
start_index = decoded_output.find(start_token)
if start_index != -1:
start_index += len(start_token)
end_index = decoded_output.find(end_token, start_index)
assistant_response = decoded_output[start_index:].strip()
return assistant_response
return decoded_output
except Exception as e:
logging.error(f"Gemma response generation error: {e}")
return "I'm sorry, I encountered an error generating a response."
def load_audio(audio_path: str, generator) -> torch.Tensor:
try:
audio_tensor, sample_rate = torchaudio.load(audio_path)
audio_tensor = audio_tensor.mean(dim=0)
if sample_rate != generator.sample_rate:
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=generator.sample_rate)
return audio_tensor
except Exception as e:
logging.error(f"Audio loading error: {e}")
raise gr.Error("Could not load or process the audio file.") from e
def clear_history():
global conversation_history
conversation_history = []
logging.info("Conversation history cleared.")
return "Conversation history cleared."
# --- Main Inference Function ---
@spaces.GPU(duration=gpu_timeout) # GPU decorator
def infer(user_audio) -> tuple[int, np.ndarray]:
if torch.cuda.is_available():
device = "cuda"
logging.info(f"CUDA is available! Using device: {torch.cuda.get_device_name(0)}")
else:
device = "cpu"
logging.info("CUDA is NOT available. Using CPU.")
try:
# --- Model Loading (ONLY inside infer, after GPU is available) ---
generator = load_csm_1b(csm_1b_model_path, device)
logging.info("Sesame CSM 1B loaded successfully.")
whisper_model = whisper.load_model(whisper_model_name, device=device, download_root=whisper_local_dir)
logging.info(f"Whisper model '{whisper_model_name}' loaded successfully.")
tokenizer_gemma = AutoTokenizer.from_pretrained(gemma_local_path)
model_gemma = AutoModelForCausalLM.from_pretrained(gemma_local_path).to(device)
logging.info("Gemma 3 1B pt model loaded successfully.")
if not user_audio:
raise ValueError("No audio input received.")
return _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device)
except Exception as e:
logging.exception(f"Inference error: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
def _infer(user_audio, generator, whisper_model, tokenizer_gemma, model_gemma, device) -> tuple[int, np.ndarray]:
global conversation_history
try:
user_text = transcribe_audio(user_audio, whisper_model)
logging.info(f"User: {user_text}")
ai_text = generate_response(user_text, model_gemma, tokenizer_gemma, device)
logging.info(f"AI: {ai_text}")
try:
ai_audio = generator.generate(
text=ai_text,
speaker=SPEAKER_ID,
context=conversation_history,
max_audio_length_ms=10_000,
)
logging.info("Audio generated successfully.")
except Exception as e:
logging.error(f"Sesame response generation error: {e}")
raise gr.Error(f"Sesame response generation error: {e}")
user_segment = Segment(speaker = 1, text = user_text, audio = load_audio(user_audio, generator))
ai_segment = Segment(speaker = SPEAKER_ID, text = ai_text, audio = ai_audio)
conversation_history.append(user_segment)
conversation_history.append(ai_segment)
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
conversation_history.pop(0)
audio_tensor, wm_sample_rate = watermark(
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
)
audio_tensor = torchaudio.functional.resample(
audio_tensor, orig_freq=wm_sample_rate, new_freq=generator.sample_rate
)
ai_audio_array = (audio_tensor * 32768).to(torch.int16).cpu().numpy()
return generator.sample_rate, ai_audio_array
except Exception as e:
logging.exception(f"Error in _infer: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
# --- Gradio Interface ---
with gr.Blocks() as app:
gr.Markdown(SPACE_INTRO_TEXT)
audio_input = gr.Audio(label="Your Input", type="filepath")
audio_output = gr.Audio(label="AI Response")
clear_button = gr.Button("Clear Conversation History")
status_display = gr.Textbox(label="Status", visible=False)
btn = gr.Button("Generate Response")
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
clear_button.click(clear_history, outputs=[status_display])
app.launch(ssr_mode=False) |