Spaces:
Bradarr
/
Runtime error

csm-1b / app.py
Bradarr's picture
Update app.py
c51f2cc verified
raw
history blame
8.23 kB
import os
import gradio as gr
import numpy as np
import spaces
import torch
import torchaudio
from generator import Segment, load_csm_1b
from huggingface_hub import hf_hub_download, login
from watermarking import watermark
import whisperx
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Authentication and Configuration
try:
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN not found in environment variables.")
login(token=api_key)
CSM_1B_HF_WATERMARK = list(map(int, os.getenv("WATERMARK_KEY").split(" ")))
if not CSM_1B_HF_WATERMARK:
raise ValueError("WATERMARK_KEY not found or invalid in environment variables.")
gpu_timeout = int(os.getenv("GPU_TIMEOUT", 180))
except (ValueError, TypeError) as e:
logging.error(f"Configuration error: {e}")
raise
SPACE_INTRO_TEXT = """\
# Sesame CSM 1B - Conversational Demo
This demo allows you to have a conversation with Sesame CSM 1B, leveraging WhisperX for speech-to-text and Gemma for generating responses. This is an experimental integration and may require significant resources.
*Disclaimer: This demo relies on several large models. Expect longer processing times, and potential resource limitations.*
"""
# Constants
SPEAKER_ID = 0 # Arbitrary speaker ID
MAX_CONTEXT_SEGMENTS = 5
MAX_GEMMA_LENGTH = 300
device = "cuda" # if torch.cuda.is_available() else "cpu"
# Global conversation history
conversation_history = []
# Global variables to hold loaded models
global_generator = None
global_whisper_model = None
global_model_a = None
# global_whisper_metadata = None # No longer needed at the global level
global_tokenizer_gemma = None
global_model_gemma = None
# --- HELPER FUNCTIONS ---
def transcribe_audio(audio_path: str, whisper_model, model_a) -> str: # Removed whisper_metadata
"""Transcribes audio using WhisperX and aligns it."""
try:
audio = whisperx.load_audio(audio_path)
result = whisper_model.transcribe(audio, batch_size=16)
# Get language from the result. Much more reliable.
language = result["language"]
# Align Whisper output
model_a, metadata = whisperx.load_align_model(language_code=language, device=device) #Load it here to ensure metadata is extracted.
result_aligned = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
return result_aligned["segments"][0]["text"]
except Exception as e:
logging.error(f"WhisperX transcription error: {e}")
return "Error: Could not transcribe audio."
def generate_response(text: str, tokenizer_gemma, model_gemma) -> str:
"""Generates a response using Gemma."""
try:
input_text = "Here is a response for the user. " + text
input = tokenizer_gemma(input_text, return_tensors="pt").to(device)
generated_output = model_gemma.generate(**input, max_length=MAX_GEMMA_LENGTH, early_stopping=True)
return tokenizer_gemma.decode(generated_output[0], skip_special_tokens=True)
except Exception as e:
logging.error(f"Gemma response generation error: {e}")
return "I'm sorry, I encountered an error generating a response."
def load_audio(audio_path: str) -> torch.Tensor:
"""Loads audio from file and returns a torch tensor."""
try:
audio_tensor, sample_rate = torchaudio.load(audio_path)
audio_tensor = audio_tensor.mean(dim=0) # Mono audio
if sample_rate != global_generator.sample_rate:
audio_tensor = torchaudio.functional.resample(
audio_tensor, orig_freq=sample_rate, new_freq=global_generator.sample_rate
)
return audio_tensor
except Exception as e:
logging.error(f"Audio loading error: {e}")
raise gr.Error("Could not load or process the audio file.") from e
def clear_history():
"""Clears the conversation history"""
global conversation_history
conversation_history = []
logging.info("Conversation history cleared.")
return "Conversation history cleared."
# --- MAIN INFERENCE FUNCTION ---
@spaces.GPU(gpu_timeout=gpu_timeout)
def infer(user_audio) -> tuple:
"""Infers a response from the user audio."""
global global_generator, global_whisper_model, global_model_a, global_tokenizer_gemma, global_model_gemma, device
try:
if not user_audio:
raise ValueError("No audio input received.")
# Load models if not already loaded
if global_generator is None:
model_path = hf_hub_download(repo_id="sesame/csm-1b", filename="ckpt.pt")
global_generator = load_csm_1b(model_path, device)
logging.info("Sesame CSM 1B loaded successfully on GPU.")
if global_whisper_model is None:
global_whisper_model = whisperx.load_model("large-v2", device) # No unpacking
logging.info("WhisperX model loaded successfully on GPU.")
if global_tokenizer_gemma is None:
global_tokenizer_gemma = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")
global_model_gemma = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt").to(device)
logging.info("Gemma 3 1B pt model loaded successfully on GPU.")
return _infer(user_audio, global_generator, global_whisper_model, global_model_a, global_tokenizer_gemma, global_model_gemma) #Removed Metadata
except Exception as e:
logging.exception(f"Inference error: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
def _infer(user_audio, generator, whisper_model, model_a, tokenizer_gemma, model_gemma) -> tuple:
"""Processes the user input, generates a response, and returns audio."""
global conversation_history
try:
# 1. ASR: Transcribe user audio using WhisperX
user_text = transcribe_audio(user_audio, whisper_model, model_a) #Removed Metadata
logging.info(f"User: {user_text}")
# 2. LLM: Generate a response using Gemma
ai_text = generate_response(user_text, tokenizer_gemma, model_gemma)
logging.info(f"AI: {ai_text}")
# 3. Generate audio using the CSM model
ai_audio = generator.generate(
text=ai_text,
speaker=SPEAKER_ID,
context=conversation_history,
max_audio_length_ms=30_000,
)
logging.info("Audio generated successfully.")
#Update conversation history with user input and ai response.
user_segment = Segment(speaker = SPEAKER_ID, text = 'User Audio', audio = load_audio(user_audio))
ai_segment = Segment(speaker = SPEAKER_ID, text = 'AI Audio', audio = ai_audio)
conversation_history.append(user_segment)
conversation_history.append(ai_segment)
#Limit Conversation History
if len(conversation_history) > MAX_CONTEXT_SEGMENTS:
conversation_history.pop(0)
# 4. Watermarking and Audio Conversion
audio_tensor, wm_sample_rate = watermark(
generator._watermarker, ai_audio, generator.sample_rate, CSM_1B_HF_WATERMARK
)
audio_tensor = torchaudio.functional.resample(
audio_tensor, orig_freq=wm_sample_rate, new_freq=generator.sample_rate
)
ai_audio_array = (audio_tensor * 32768).to(torch.int16).cpu().numpy()
return generator.sample_rate, ai_audio_array
except Exception as e:
logging.exception(f"Error in _infer: {e}")
raise gr.Error(f"An error occurred during processing: {e}")
# --- GRADIO INTERFACE ---
with gr.Blocks() as app:
gr.Markdown(SPACE_INTRO_TEXT)
audio_input = gr.Audio(label="Your Input", type="filepath")
audio_output = gr.Audio(label="AI Response")
clear_button = gr.Button("Clear Conversation History")
status_display = gr.Textbox(label="Status", visible=False)
btn = gr.Button("Generate Response")
btn.click(infer, inputs=[audio_input], outputs=[audio_output])
clear_button.click(clear_history, outputs=[status_display])
app.launch(share=False)