|
from dataclasses import dataclass |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torchtune |
|
from torchtune.models import llama3_2 |
|
|
|
|
|
def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder: |
|
return llama3_2.llama3_2( |
|
vocab_size=128_256, |
|
num_layers=16, |
|
num_heads=32, |
|
num_kv_heads=8, |
|
embed_dim=2048, |
|
max_seq_len=2048, |
|
intermediate_dim=8192, |
|
attn_dropout=0.0, |
|
norm_eps=1e-5, |
|
rope_base=500_000, |
|
scale_factor=32, |
|
) |
|
|
|
|
|
def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder: |
|
return llama3_2.llama3_2( |
|
vocab_size=128_256, |
|
num_layers=4, |
|
num_heads=8, |
|
num_kv_heads=2, |
|
embed_dim=1024, |
|
max_seq_len=2048, |
|
intermediate_dim=8192, |
|
attn_dropout=0.0, |
|
norm_eps=1e-5, |
|
rope_base=500_000, |
|
scale_factor=32, |
|
) |
|
|
|
|
|
FLAVORS = { |
|
"llama-1B": llama3_2_1B, |
|
"llama-100M": llama3_2_100M, |
|
} |
|
|
|
|
|
def _prepare_transformer(model): |
|
embed_dim = model.tok_embeddings.embedding_dim |
|
model.tok_embeddings = nn.Identity() |
|
model.output = nn.Identity() |
|
return model, embed_dim |
|
|
|
|
|
def _create_causal_mask(seq_len: int, device: torch.device): |
|
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) |
|
|
|
|
|
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor): |
|
""" |
|
Args: |
|
mask: (max_seq_len, max_seq_len) |
|
input_pos: (batch_size, seq_len) |
|
|
|
Returns: |
|
(batch_size, seq_len, max_seq_len) |
|
""" |
|
r = mask[input_pos, :] |
|
return r |
|
|
|
|
|
def _multinomial_sample_one_no_sync(probs): |
|
q = torch.empty_like(probs).exponential_(1) |
|
return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int) |
|
|
|
|
|
def sample_topk(logits: torch.Tensor, topk: int, temperature: float): |
|
logits = logits / temperature |
|
|
|
filter_value: float = -float("Inf") |
|
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None] |
|
scores_processed = logits.masked_fill(indices_to_remove, filter_value) |
|
scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1) |
|
probs = torch.nn.functional.softmax(scores_processed, dim=-1) |
|
|
|
sample_token = _multinomial_sample_one_no_sync(probs) |
|
return sample_token |
|
|
|
|
|
@dataclass |
|
class ModelArgs: |
|
backbone_flavor: str |
|
decoder_flavor: str |
|
text_vocab_size: int |
|
audio_vocab_size: int |
|
audio_num_codebooks: int |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, args: ModelArgs): |
|
super().__init__() |
|
self.args = args |
|
|
|
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[args.backbone_flavor]()) |
|
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[args.decoder_flavor]()) |
|
|
|
self.text_embeddings = nn.Embedding(args.text_vocab_size, backbone_dim) |
|
self.audio_embeddings = nn.Embedding(args.audio_vocab_size * args.audio_num_codebooks, backbone_dim) |
|
|
|
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False) |
|
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False) |
|
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size)) |
|
|
|
def setup_caches(self, max_batch_size: int) -> torch.Tensor: |
|
"""Setup KV caches and return a causal mask.""" |
|
dtype = next(self.parameters()).dtype |
|
device = next(self.parameters()).device |
|
|
|
with device: |
|
self.backbone.setup_caches(max_batch_size, dtype) |
|
self.decoder.setup_caches(max_batch_size, dtype, decoder_max_seq_len=self.args.audio_num_codebooks) |
|
|
|
self.register_buffer("backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device)) |
|
self.register_buffer("decoder_causal_mask", _create_causal_mask(self.args.audio_num_codebooks, device)) |
|
|
|
def generate_frame( |
|
self, |
|
tokens: torch.Tensor, |
|
tokens_mask: torch.Tensor, |
|
input_pos: torch.Tensor, |
|
temperature: float, |
|
topk: int, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
tokens: (batch_size, seq_len, audio_num_codebooks+1) |
|
tokens_mask: (batch_size, seq_len, audio_num_codebooks+1) |
|
input_pos: (batch_size, seq_len) positions for each token |
|
mask: (batch_size, seq_len, max_seq_len |
|
|
|
Returns: |
|
(batch_size, audio_num_codebooks) sampled tokens |
|
""" |
|
dtype = next(self.parameters()).dtype |
|
b, s, _ = tokens.size() |
|
|
|
assert self.backbone.caches_are_enabled(), "backbone caches are not enabled" |
|
curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos) |
|
embeds = self._embed_tokens(tokens) |
|
masked_embeds = embeds * tokens_mask.unsqueeze(-1) |
|
h = masked_embeds.sum(dim=2) |
|
h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(dtype=dtype) |
|
|
|
last_h = h[:, -1, :] |
|
c0_logits = self.codebook0_head(last_h) |
|
c0_sample = sample_topk(c0_logits, topk, temperature) |
|
c0_embed = self._embed_audio(0, c0_sample) |
|
|
|
curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1) |
|
curr_sample = c0_sample.clone() |
|
curr_pos = torch.arange(0, curr_h.size(1), device=curr_h.device).unsqueeze(0).repeat(curr_h.size(0), 1) |
|
|
|
|
|
self.decoder.reset_caches() |
|
for i in range(1, self.args.audio_num_codebooks): |
|
curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos) |
|
decoder_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask).to( |
|
dtype=dtype |
|
) |
|
ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1]) |
|
ci_sample = sample_topk(ci_logits, topk, temperature) |
|
ci_embed = self._embed_audio(i, ci_sample) |
|
|
|
curr_h = ci_embed |
|
curr_sample = torch.cat([curr_sample, ci_sample], dim=1) |
|
curr_pos = curr_pos[:, -1:] + 1 |
|
|
|
return curr_sample |
|
|
|
def reset_caches(self): |
|
self.backbone.reset_caches() |
|
self.decoder.reset_caches() |
|
|
|
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor: |
|
return self.audio_embeddings(tokens + codebook * self.args.audio_vocab_size) |
|
|
|
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor: |
|
text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2) |
|
|
|
audio_tokens = tokens[:, :, :-1] + ( |
|
self.args.audio_vocab_size * torch.arange(self.args.audio_num_codebooks, device=tokens.device) |
|
) |
|
audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape( |
|
tokens.size(0), tokens.size(1), self.args.audio_num_codebooks, -1 |
|
) |
|
|
|
return torch.cat([audio_embeds, text_embeds], dim=-2) |
|
|