Bsbell21's picture
Update app.py
23dcf81 verified
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"Bsbell21/MarketMail-Bloomz"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
device_map="auto",
load_in_8bit=False
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
'''
def make_inference(product, description):
batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt')
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=200)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
'''
def make_inference(product, description):
batch = tokenizer(f"### INSTRUCTION\nBelow is a product and description, please write a marketing email for this product.\n\n### Product:\n{product}\n### Description:\n{description}\n\n### Marketing Email:\n", return_tensors='pt')
batch = {key: value.to('cuda:0') for key, value in batch.items()}
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=200)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
gr.Interface(
make_inference,
[
gr.Textbox(lines=2, label="Product Name"),
gr.Textbox(lines=5, label="Product Description"),
],
gr.Textbox(label="Email Ad"),
title="MarketMail-AI",
description="MarketMail-AI is a generative model that generates email ads for products.",
).launch()