Dolphin / app.py
xfey's picture
[init] update application file
dfb1341
raw
history blame
16.1 kB
import os
import tempfile
import time
import uuid
import cv2
import gradio as gr
import pymupdf
import spaces
import torch
from gradio_pdf import PDF
from loguru import logger
from PIL import Image
from transformers import AutoProcessor, VisionEncoderDecoderModel
from utils.utils import prepare_image, parse_layout_string, process_coordinates, ImageDimensions
# 读取外部CSS文件
def load_css():
css_path = os.path.join(os.path.dirname(__file__), "static", "styles.css")
if os.path.exists(css_path):
with open(css_path, "r", encoding="utf-8") as f:
return f.read()
return ""
# 全局变量存储模型
model = None
processor = None
tokenizer = None
# 自动初始化模型
@spaces.GPU
def initialize_model():
"""初始化 Hugging Face 模型"""
global model, processor, tokenizer
if model is None:
logger.info("Loading DOLPHIN model...")
model_id = "ByteDance/Dolphin"
# 加载处理器和模型
processor = AutoProcessor.from_pretrained(model_id)
model = VisionEncoderDecoderModel.from_pretrained(model_id)
model.eval()
# 设置设备和精度
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model = model.half() # 使用半精度
# 设置tokenizer
tokenizer = processor.tokenizer
logger.info(f"Model loaded successfully on {device}")
return "Model ready"
# 启动时自动初始化模型
logger.info("Initializing model at startup...")
try:
initialize_model()
logger.info("Model initialization completed")
except Exception as e:
logger.error(f"Model initialization failed: {e}")
# 模型将在首次使用时重新尝试初始化
# 模型推理函数
@spaces.GPU
def model_chat(prompt, image):
"""使用模型进行推理"""
global model, processor, tokenizer
# 确保模型已初始化
if model is None:
initialize_model()
# 检查是否为批处理
is_batch = isinstance(image, list)
if not is_batch:
images = [image]
prompts = [prompt]
else:
images = image
prompts = prompt if isinstance(prompt, list) else [prompt] * len(images)
# 准备图像
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_inputs = processor(images, return_tensors="pt", padding=True)
batch_pixel_values = batch_inputs.pixel_values.half().to(device)
# 准备提示
prompts = [f"<s>{p} <Answer/>" for p in prompts]
batch_prompt_inputs = tokenizer(
prompts,
add_special_tokens=False,
return_tensors="pt"
)
batch_prompt_ids = batch_prompt_inputs.input_ids.to(device)
batch_attention_mask = batch_prompt_inputs.attention_mask.to(device)
# 生成文本
outputs = model.generate(
pixel_values=batch_pixel_values,
decoder_input_ids=batch_prompt_ids,
decoder_attention_mask=batch_attention_mask,
min_length=1,
max_length=4096,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
bad_words_ids=[[tokenizer.unk_token_id]],
return_dict_in_generate=True,
do_sample=False,
num_beams=1,
repetition_penalty=1.1
)
# 处理输出
sequences = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=False)
# 清理提示文本
results = []
for i, sequence in enumerate(sequences):
cleaned = sequence.replace(prompts[i], "").replace("<pad>", "").replace("</s>", "").strip()
results.append(cleaned)
# 返回单个结果或批处理结果
if not is_batch:
return results[0]
return results
# 处理元素批次
@spaces.GPU
def process_element_batch(elements, prompt, max_batch_size=16):
"""处理同类型元素的批次"""
results = []
# 确定批次大小
batch_size = min(len(elements), max_batch_size)
# 分批处理
for i in range(0, len(elements), batch_size):
batch_elements = elements[i:i+batch_size]
crops_list = [elem["crop"] for elem in batch_elements]
# 使用相同的提示
prompts_list = [prompt] * len(crops_list)
# 批量推理
batch_results = model_chat(prompts_list, crops_list)
# 添加结果
for j, result in enumerate(batch_results):
elem = batch_elements[j]
results.append({
"label": elem["label"],
"bbox": elem["bbox"],
"text": result.strip(),
"reading_order": elem["reading_order"],
})
return results
# 清理临时文件
def cleanup_temp_file(file_path):
"""安全地删除临时文件"""
try:
if file_path and os.path.exists(file_path):
os.unlink(file_path)
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
def to_pdf(file_path):
"""将输入文件转换为PDF格式"""
if file_path is None:
return None
with pymupdf.open(file_path) as f:
if f.is_pdf:
return file_path
else:
pdf_bytes = f.convert_to_pdf()
# 使用临时文件而不是保存到磁盘
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as tmp_file:
tmp_file.write(pdf_bytes)
return tmp_file.name
@spaces.GPU(duration=120)
def process_document(file_path):
"""处理文档的主要函数 - 集成完整的推理逻辑"""
if file_path is None:
return "", "", {}, {}
start_time = time.time()
original_file_path = file_path
# 确保模型已初始化
if model is None:
initialize_model()
# 转换为PDF(如果需要)
converted_file_path = to_pdf(file_path)
temp_file_created = converted_file_path != original_file_path
try:
logger.info(f"Processing document: {file_path}")
# 处理页面
recognition_results = process_page(converted_file_path)
# 生成Markdown内容
md_content = generate_markdown(recognition_results)
# 计算处理时间
processing_time = time.time() - start_time
debug_info = {
"original_file": original_file_path,
"converted_file": converted_file_path,
"temp_file_created": temp_file_created,
"status": "success",
"processing_time": f"{processing_time:.2f}s",
"total_elements": len(recognition_results)
}
processing_data = {
"pages": [{"elements": recognition_results}],
"total_elements": len(recognition_results),
"processing_time": f"{processing_time:.2f}s"
}
logger.info(f"Document processed successfully in {processing_time:.2f}s")
return md_content, md_content, processing_data, debug_info
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
error_info = {
"original_file": original_file_path,
"converted_file": converted_file_path,
"temp_file_created": temp_file_created,
"status": "error",
"error": str(e)
}
return f"# 处理错误\n\n处理文档时发生错误: {str(e)}", "", {}, error_info
finally:
# 清理临时文件
if temp_file_created:
cleanup_temp_file(converted_file_path)
def process_page(image_path):
"""处理单页文档"""
# 阶段1: 页面级布局解析
pil_image = Image.open(image_path).convert("RGB")
layout_output = model_chat("Parse the reading order of this document.", pil_image)
# 阶段2: 元素级内容解析
padded_image, dims = prepare_image(pil_image)
recognition_results = process_elements(layout_output, padded_image, dims)
return recognition_results
def process_elements(layout_results, padded_image, dims, max_batch_size=16):
"""解析所有文档元素"""
layout_results = parse_layout_string(layout_results)
# 分别存储不同类型的元素
text_elements = [] # 文本元素
table_elements = [] # 表格元素
figure_results = [] # 图像元素(无需处理)
previous_box = None
reading_order = 0
# 收集要处理的元素并按类型分组
for bbox, label in layout_results:
try:
# 调整坐标
x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, previous_box = process_coordinates(
bbox, padded_image, dims, previous_box
)
# 裁剪并解析元素
cropped = padded_image[y1:y2, x1:x2]
if cropped.size > 0:
if label == "fig":
# 对于图像区域,直接添加空文本结果
figure_results.append(
{
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"text": "",
"reading_order": reading_order,
}
)
else:
# 准备元素进行解析
pil_crop = Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
element_info = {
"crop": pil_crop,
"label": label,
"bbox": [orig_x1, orig_y1, orig_x2, orig_y2],
"reading_order": reading_order,
}
# 按类型分组
if label == "tab":
table_elements.append(element_info)
else: # 文本元素
text_elements.append(element_info)
reading_order += 1
except Exception as e:
logger.error(f"Error processing bbox with label {label}: {str(e)}")
continue
# 初始化结果列表
recognition_results = figure_results.copy()
# 处理文本元素(批量)
if text_elements:
text_results = process_element_batch(text_elements, "Read text in the image.", max_batch_size)
recognition_results.extend(text_results)
# 处理表格元素(批量)
if table_elements:
table_results = process_element_batch(table_elements, "Parse the table in the image.", max_batch_size)
recognition_results.extend(table_results)
# 按阅读顺序排序
recognition_results.sort(key=lambda x: x.get("reading_order", 0))
return recognition_results
def generate_markdown(recognition_results):
"""从识别结果生成Markdown内容"""
markdown_parts = []
for result in recognition_results:
text = result.get("text", "").strip()
label = result.get("label", "")
if text:
if label == "tab":
# 表格内容
markdown_parts.append(f"\n{text}\n")
else:
# 普通文本内容
markdown_parts.append(text)
return "\n\n".join(markdown_parts)
# LaTeX 渲染配置
latex_delimiters = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
{"left": "\\(", "right": "\\)", "display": False},
]
# 加载自定义CSS
custom_css = load_css()
# 读取页面头部
with open("header.html", "r", encoding="utf-8") as file:
header = file.read()
# 创建 Gradio 界面
with gr.Blocks(css=custom_css, title="Dolphin Document Parser") as demo:
gr.HTML(header)
with gr.Row():
# 侧边栏 - 文件上传和控制
with gr.Column(scale=1, elem_classes="sidebar"):
# 文件上传组件
file = gr.File(
label="Choose PDF or image file",
file_types=[".pdf", ".png", ".jpeg", ".jpg"],
elem_id="file-upload"
)
gr.HTML("选择文件后,点击处理按钮开始解析<br>After selecting the file, click the Process button to start parsing")
with gr.Row(elem_classes="action-buttons"):
submit_btn = gr.Button("处理文档/Process Document", variant="primary")
clear_btn = gr.ClearButton(value="清空/Clear")
# 处理状态显示
status_display = gr.Textbox(
label="Processing Status",
value="Ready to process documents",
interactive=False,
max_lines=2
)
# 示例文件
example_root = os.path.join(os.path.dirname(__file__), "examples")
if os.path.exists(example_root):
gr.HTML("示例文件/Example Files")
example_files = [
os.path.join(example_root, f)
for f in os.listdir(example_root)
if not f.endswith(".py")
]
examples = gr.Examples(
examples=example_files,
inputs=file,
examples_per_page=10,
elem_id="example-files"
)
# 主体内容区域
with gr.Column(scale=7):
with gr.Row(elem_classes="main-content"):
# 预览面板
with gr.Column(scale=1, elem_classes="preview-panel"):
gr.HTML("文件预览/Preview")
pdf_show = PDF(label="", interactive=False, visible=True, height=600)
debug_output = gr.JSON(label="Debug Info", height=100)
# 输出面板
with gr.Column(scale=1, elem_classes="output-panel"):
with gr.Tabs():
with gr.Tab("Markdown [Render]"):
md_render = gr.Markdown(
label="",
height=700,
show_copy_button=True,
latex_delimiters=latex_delimiters,
line_breaks=True,
)
with gr.Tab("Markdown [Content]"):
md_content = gr.TextArea(lines=30, show_copy_button=True)
with gr.Tab("Processing Data"):
json_output = gr.JSON(label="", height=700)
# 事件处理
file.change(fn=to_pdf, inputs=file, outputs=pdf_show)
# 文档处理
def process_with_status(file_path):
"""处理文档并更新状态"""
if file_path is None:
return "", "", {}, {}, "Please select a file first"
# 更新状态为处理中
status = "Processing document..."
# 执行文档处理
md_render_result, md_content_result, json_result, debug_result = process_document(file_path)
# 更新完成状态
if "错误" in md_render_result:
status = "Processing failed - see debug info"
else:
status = "Processing completed successfully"
return md_render_result, md_content_result, json_result, debug_result, status
submit_btn.click(
fn=process_with_status,
inputs=[file],
outputs=[md_render, md_content, json_output, debug_output, status_display],
)
# 清空所有内容
def reset_all():
return None, None, "", "", {}, {}, "Ready to process documents"
clear_btn.click(
fn=reset_all,
inputs=[],
outputs=[file, pdf_show, md_render, md_content, json_output, debug_output, status_display]
)
# 启动应用
if __name__ == "__main__":
demo.launch()