Dolphin / utils /utils.py
xfey's picture
[init] update application file
dfb1341
"""
Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
SPDX-License-Identifier: MIT
"""
import copy
import json
import os
import re
from dataclasses import dataclass
from typing import List, Tuple
import albumentations as alb
import cv2
import numpy as np
from albumentations.pytorch import ToTensorV2
from PIL import Image
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms.functional import resize
from utils.markdown_utils import MarkdownConverter
def alb_wrapper(transform):
def f(im):
return transform(image=np.asarray(im))["image"]
return f
test_transform = alb_wrapper(
alb.Compose(
[
alb.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
ToTensorV2(),
]
)
)
def check_coord_valid(x1, y1, x2, y2, image_size=None, abs_coord=True):
# print(f"check_coord_valid: {x1}, {y1}, {x2}, {y2}, {image_size}, {abs_coord}")
if x2 <= x1 or y2 <= y1:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
if x1 < 0 or y1 < 0:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
if not abs_coord:
if x2 > 1 or y2 > 1:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
elif image_size is not None: # has image size
if x2 > image_size[0] or y2 > image_size[1]:
return False, f"[{x1}, {y1}, {x2}, {y2}]"
return True, None
def adjust_box_edges(image, boxes: List[List[float]], max_pixels=15, threshold=0.2):
"""
Image: cv2.image object, or Path
Input: boxes: list of boxes [[x1, y1, x2, y2]]. Using absolute coordinates.
"""
if isinstance(image, str):
image = cv2.imread(image)
img_h, img_w = image.shape[:2]
new_boxes = []
for box in boxes:
best_box = copy.deepcopy(box)
def check_edge(img, current_box, i, is_vertical):
edge = current_box[i]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
if is_vertical:
line = binary[current_box[1] : current_box[3] + 1, edge]
else:
line = binary[edge, current_box[0] : current_box[2] + 1]
transitions = np.abs(np.diff(line))
return np.sum(transitions) / len(transitions)
# Only widen the box
edges = [(0, -1, True), (2, 1, True), (1, -1, False), (3, 1, False)]
current_box = copy.deepcopy(box)
# make sure the box is within the image
current_box[0] = min(max(current_box[0], 0), img_w - 1)
current_box[1] = min(max(current_box[1], 0), img_h - 1)
current_box[2] = min(max(current_box[2], 0), img_w - 1)
current_box[3] = min(max(current_box[3], 0), img_h - 1)
for i, direction, is_vertical in edges:
best_score = check_edge(image, current_box, i, is_vertical)
if best_score <= threshold:
continue
for step in range(max_pixels):
current_box[i] += direction
if i == 0 or i == 2:
current_box[i] = min(max(current_box[i], 0), img_w - 1)
else:
current_box[i] = min(max(current_box[i], 0), img_h - 1)
score = check_edge(image, current_box, i, is_vertical)
if score < best_score:
best_score = score
best_box = copy.deepcopy(current_box)
if score <= threshold:
break
new_boxes.append(best_box)
return new_boxes
def parse_layout_string(bbox_str):
"""Parse layout string using regular expressions"""
pattern = r"\[(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+),\s*(\d*\.?\d+)\]\s*(\w+)"
matches = re.finditer(pattern, bbox_str)
parsed_results = []
for match in matches:
coords = [float(match.group(i)) for i in range(1, 5)]
label = match.group(5).strip()
parsed_results.append((coords, label))
return parsed_results
@dataclass
class ImageDimensions:
"""Class to store image dimensions"""
original_w: int
original_h: int
padded_w: int
padded_h: int
def map_to_original_coordinates(x1, y1, x2, y2, dims: ImageDimensions) -> Tuple[int, int, int, int]:
"""Map coordinates from padded image back to original image
Args:
x1, y1, x2, y2: Coordinates in padded image
dims: Image dimensions object
Returns:
tuple: (x1, y1, x2, y2) coordinates in original image
"""
try:
# Calculate padding offsets
top = (dims.padded_h - dims.original_h) // 2
left = (dims.padded_w - dims.original_w) // 2
# Map back to original coordinates
orig_x1 = max(0, x1 - left)
orig_y1 = max(0, y1 - top)
orig_x2 = min(dims.original_w, x2 - left)
orig_y2 = min(dims.original_h, y2 - top)
# Ensure we have a valid box (width and height > 0)
if orig_x2 <= orig_x1:
orig_x2 = min(orig_x1 + 1, dims.original_w)
if orig_y2 <= orig_y1:
orig_y2 = min(orig_y1 + 1, dims.original_h)
return int(orig_x1), int(orig_y1), int(orig_x2), int(orig_y2)
except Exception as e:
print(f"map_to_original_coordinates error: {str(e)}")
# Return safe coordinates
return 0, 0, min(100, dims.original_w), min(100, dims.original_h)
def map_to_relevant_coordinates(abs_coords, dims: ImageDimensions):
"""
From absolute coordinates to relevant coordinates
e.g. [100, 100, 200, 200] -> [0.1, 0.2, 0.3, 0.4]
"""
try:
x1, y1, x2, y2 = abs_coords
return round(x1 / dims.original_w, 3), round(y1 / dims.original_h, 3), round(x2 / dims.original_w, 3), round(y2 / dims.original_h, 3)
except Exception as e:
print(f"map_to_relevant_coordinates error: {str(e)}")
return 0.0, 0.0, 1.0, 1.0 # Return full image coordinates
def process_coordinates(coords, padded_image, dims: ImageDimensions, previous_box=None):
"""Process and adjust coordinates
Args:
coords: Normalized coordinates [x1, y1, x2, y2]
padded_image: Padded image
dims: Image dimensions object
previous_box: Previous box coordinates for overlap adjustment
Returns:
tuple: (x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box)
"""
try:
# Convert normalized coordinates to absolute coordinates
x1, y1 = int(coords[0] * dims.padded_w), int(coords[1] * dims.padded_h)
x2, y2 = int(coords[2] * dims.padded_w), int(coords[3] * dims.padded_h)
# Ensure coordinates are within image bounds before adjustment
x1 = max(0, min(x1, dims.padded_w - 1))
y1 = max(0, min(y1, dims.padded_h - 1))
x2 = max(0, min(x2, dims.padded_w))
y2 = max(0, min(y2, dims.padded_h))
# Ensure width and height are at least 1 pixel
if x2 <= x1:
x2 = min(x1 + 1, dims.padded_w)
if y2 <= y1:
y2 = min(y1 + 1, dims.padded_h)
# Extend box boundaries
new_boxes = adjust_box_edges(padded_image, [[x1, y1, x2, y2]])
x1, y1, x2, y2 = new_boxes[0]
# Ensure coordinates are still within image bounds after adjustment
x1 = max(0, min(x1, dims.padded_w - 1))
y1 = max(0, min(y1, dims.padded_h - 1))
x2 = max(0, min(x2, dims.padded_w))
y2 = max(0, min(y2, dims.padded_h))
# Ensure width and height are at least 1 pixel after adjustment
if x2 <= x1:
x2 = min(x1 + 1, dims.padded_w)
if y2 <= y1:
y2 = min(y1 + 1, dims.padded_h)
# Check for overlap with previous box and adjust
if previous_box is not None:
prev_x1, prev_y1, prev_x2, prev_y2 = previous_box
if (x1 < prev_x2 and x2 > prev_x1) and (y1 < prev_y2 and y2 > prev_y1):
y1 = prev_y2
# Ensure y1 is still valid
y1 = min(y1, dims.padded_h - 1)
# Make sure y2 is still greater than y1
if y2 <= y1:
y2 = min(y1 + 1, dims.padded_h)
# Update previous box
new_previous_box = [x1, y1, x2, y2]
# Map to original coordinates
orig_x1, orig_y1, orig_x2, orig_y2 = map_to_original_coordinates(
x1, y1, x2, y2, dims
)
return x1, y1, x2, y2, orig_x1, orig_y1, orig_x2, orig_y2, new_previous_box
except Exception as e:
print(f"process_coordinates error: {str(e)}")
# Return safe values
orig_x1, orig_y1, orig_x2, orig_y2 = 0, 0, min(100, dims.original_w), min(100, dims.original_h)
return 0, 0, 100, 100, orig_x1, orig_y1, orig_x2, orig_y2, [0, 0, 100, 100]
def prepare_image(image) -> Tuple[np.ndarray, ImageDimensions]:
"""Load and prepare image with padding while maintaining aspect ratio
Args:
image: PIL image
Returns:
tuple: (padded_image, image_dimensions)
"""
try:
# Convert PIL image to OpenCV format
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
original_h, original_w = image.shape[:2]
# Calculate padding to make square image
max_size = max(original_h, original_w)
top = (max_size - original_h) // 2
bottom = max_size - original_h - top
left = (max_size - original_w) // 2
right = max_size - original_w - left
# Apply padding
padded_image = cv2.copyMakeBorder(image, top, bottom, left, right,
cv2.BORDER_CONSTANT, value=(0, 0, 0))
padded_h, padded_w = padded_image.shape[:2]
dimensions = ImageDimensions(
original_w=original_w,
original_h=original_h,
padded_w=padded_w,
padded_h=padded_h
)
return padded_image, dimensions
except Exception as e:
print(f"prepare_image error: {str(e)}")
# Create a minimal valid image and dimensions
h, w = image.height, image.width
dimensions = ImageDimensions(
original_w=w,
original_h=h,
padded_w=w,
padded_h=h
)
# Return a black image of the same size
return np.zeros((h, w, 3), dtype=np.uint8), dimensions
def setup_output_dirs(save_dir):
"""Create necessary output directories"""
os.makedirs(save_dir, exist_ok=True)
os.makedirs(os.path.join(save_dir, "markdown"), exist_ok=True)
os.makedirs(os.path.join(save_dir, "recognition_json"), exist_ok=True)
def save_outputs(recognition_results, image_path, save_dir):
"""Save JSON and markdown outputs"""
basename = os.path.splitext(os.path.basename(image_path))[0]
# Save JSON file
json_path = os.path.join(save_dir, "recognition_json", f"{basename}.json")
with open(json_path, "w", encoding="utf-8") as f:
json.dump(recognition_results, f, ensure_ascii=False, indent=2)
# Generate and save markdown file
markdown_converter = MarkdownConverter()
markdown_content = markdown_converter.convert(recognition_results)
markdown_path = os.path.join(save_dir, "markdown", f"{basename}.md")
with open(markdown_path, "w", encoding="utf-8") as f:
f.write(markdown_content)
return json_path
def crop_margin(img: Image.Image) -> Image.Image:
"""Crop margins from image"""
try:
width, height = img.size
if width == 0 or height == 0:
print("Warning: Image has zero width or height")
return img
data = np.array(img.convert("L"))
data = data.astype(np.uint8)
max_val = data.max()
min_val = data.min()
if max_val == min_val:
return img
data = (data - min_val) / (max_val - min_val) * 255
gray = 255 * (data < 200).astype(np.uint8)
coords = cv2.findNonZero(gray) # Find all non-zero points (text)
if coords is None:
return img
a, b, w, h = cv2.boundingRect(coords) # Find minimum spanning bounding box
# Ensure crop coordinates are within image bounds
a = max(0, a)
b = max(0, b)
w = min(w, width - a)
h = min(h, height - b)
# Only crop if we have a valid region
if w > 0 and h > 0:
return img.crop((a, b, a + w, b + h))
return img
except Exception as e:
print(f"crop_margin error: {str(e)}")
return img # Return original image on error