MegaTTS3 / tts /modules /ar_dur /commons /rot_transformer.py
ZiyueJiang's picture
first commit for huggingface space
593f3bc
# Copyright 2025 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import torch
from typing import Optional, Tuple
from torch import nn
from torch.nn import Parameter, Linear
from tts.modules.ar_dur.commons.layers import LayerNorm, Embedding
from tts.modules.ar_dur.commons.transformer import TransformerFFNLayer, MultiheadAttention
from tts.modules.ar_dur.commons.seq_utils import get_incremental_state, set_incremental_state, softmax, make_positions
import torch.nn.functional as F
DEFAULT_MAX_SOURCE_POSITIONS = 3000
DEFAULT_MAX_TARGET_POSITIONS = 3000
class SinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length.
Padding symbols are ignored.
"""
def __init__(self, embedding_dim, padding_idx, init_size=1024):
super().__init__()
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.weights = SinusoidalPositionalEmbedding.get_embedding(
init_size,
embedding_dim,
padding_idx,
)
self.register_buffer('_float_tensor', torch.FloatTensor(1))
@staticmethod
def get_embedding(num_embeddings, embedding_dim, padding_idx=None):
"""Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb
def forward(self, input, incremental_state=None, timestep=None, positions=None, **kwargs):
"""Input is expected to be of size [bsz x seqlen]."""
bsz, seq_len = input.shape[:2]
max_pos = self.padding_idx + 1 + seq_len
if self.weights is None or max_pos > self.weights.size(0):
# recompute/expand embeddings if needed
self.weights = SinusoidalPositionalEmbedding.get_embedding(
max_pos,
self.embedding_dim,
self.padding_idx,
)
self.weights = self.weights.to(self._float_tensor)
if incremental_state is not None:
# positions is the same for every token when decoding a single step
pos = timestep.view(-1)[0] + 1 if timestep is not None else seq_len
return self.weights[self.padding_idx + pos, :].expand(bsz, 1, -1)
positions = make_positions(input, self.padding_idx) if positions is None else positions
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()
def max_positions(self):
"""Maximum number of supported positions."""
return int(1e5) # an arbitrary large number
class RotaryEmbeddings(nn.Module):
cos: torch.Tensor
sin: torch.Tensor
theta: torch.Tensor
def __init__(
self,
width: int,
*,
seq_len: int = 40000,
base: int = 10000,
device: Optional[torch.device] = None,
):
"""Rotary embeddings (Su et al., 2021) layer. The rotary embedding
will be precomputed for up to 'seq _len' positions. The embedding
will be recomputed when a longer sequence is found in the input.
:param width:
Rotary embedding dimensionality, must be even.
:param seq_len:
Number of positons to initially precompute.
:param base:
The base used for Θ_i, determines the cycle length of the
embeddings.
:param device: Device on which the module is to be initialized.
"""
super().__init__()
if width % 2:
raise ValueError(f"Width of rotary embeddings must be even, was: {width}")
# Ignore allocations on the meta device as we don't persist our buffer,
# i.e., we don't expect the backing tensor to be replaced with pretrained weights.
if device is not None and device.type == "meta":
device = None
# Θ_i = 10000^(-2(i-1)/d)
theta = torch.pow(
base, -torch.arange(0, width, 2, dtype=torch.float, device=device) / width
)
self.register_buffer("theta", theta, persistent=False)
self._create_rotary_embed(width=width, length=seq_len)
def _create_rotary_embed(self, *, width: int, length: int):
# mΘ
position = torch.arange(length, device=self.theta.device).unsqueeze(1)
m_theta = position * self.theta.unsqueeze(0)
# We apply both sin and cos twice (see Eq 15, 34), but the ordering
# is changed for compatibility with most common implementations.
m_theta = torch.cat([m_theta, m_theta], dim=-1)
re_cos = m_theta.cos().view([length, width])
re_sin = m_theta.sin().view([length, width])
self.register_buffer("cos", re_cos, persistent=False)
self.register_buffer("sin", re_sin, persistent=False)
def _rotate(self, input: torch.Tensor):
"""Rotate the input tensor by half of its innermost width.
input (Tensor): array to rotate.
RETURNS (Tensor): rotated array.
Shapes:
input - (..., width)
output - (..., width)
"""
half_idx = input.shape[-1] // 2
input_1 = -input[..., half_idx:]
input_2 = input[..., :half_idx]
return torch.cat([input_1, input_2], dim=-1)
def forward(self, input: torch.Tensor, *, positions: Optional[torch.Tensor] = None):
"""
Apply rotary embeddings to an array.
:param input: Array to apply the rotary embeddings to.
:param positions: positions of the inputs. If no positions are
provided, they are assumed to be [0, seq_len).
:return: Array with the rotary embeddings applied.
Shapes:
input - (batch_size, num_heads, seq_len, width_per_head)
positions - (batch_size, seq_len)
output - (batch_size, num_heads, seq_len, width_per_head)
"""
batch_size, _, seq_len, width = input.shape
if positions is None:
# Fastpath: positions from [0..seq_len), avoid indexing.
if self.cos.size(-2) < seq_len:
self._create_rotary_embed(width=width, length=seq_len)
rot_cos = self.cos[:seq_len, :].view(1, 1, seq_len, width)
rot_sin = self.sin[:seq_len, :].view(1, 1, seq_len, width)
else:
max_len = int(positions.max()) + 1
if self.cos.size(-2) < max_len:
self._create_rotary_embed(width=width, length=max_len)
# Flatten positions to index cos/sin arrays, then unflatten.
#
# Example shapes:
#
# positions_flat - (batch_size * seq_len)
# self.cos - (max_len, width)
# rot_cos - (batch_size, seq_len, width)
positions_flat = positions.view(-1)
rot_cos = self.cos[positions_flat].view(batch_size, 1, seq_len, width)
rot_sin = self.sin[positions_flat].view(batch_size, 1, seq_len, width)
# Eq 34 with ordering changed for compatibility.
return rot_cos * input + rot_sin * self._rotate(input)
class RotMultiheadAttention(MultiheadAttention):
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True,
add_bias_kv=False, add_zero_attn=False, self_attention=False,
encoder_decoder_attention=False):
super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias,
add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention,
encoder_decoder_attention=encoder_decoder_attention)
self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads)
def forward(
self,
query, key, value,
spk_pos_ids_flat=None,
key_padding_mask=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None,
before_softmax=False,
need_head_weights=False,
enc_dec_attn_constraint_mask=None,
reset_attn_weight=None
):
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = None
else:
k = self.in_proj_k(key)
v = self.in_proj_v(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
q = q * self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
# Apply rot embedding and store incremental_state
q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0]
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if 'prev_key' in saved_state:
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
k = torch.cat((prev_key, k), dim=1)
if 'prev_value' in saved_state:
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
v = torch.cat((prev_value, v), dim=1)
saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view(
bsz, self.num_heads, -1, self.head_dim)
self._set_input_buffer(incremental_state, saved_state)
if incremental_state is not None:
key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0)
else:
key_pos = spk_pos_ids_flat
k = self.rotary_embeds(k[None, :], positions=key_pos)[0]
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
src_len += 1
k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1)
v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as(key_padding_mask)], dim=1)
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
if len(attn_mask.shape) == 2:
attn_mask = attn_mask.unsqueeze(0)
elif len(attn_mask.shape) == 3:
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape(
bsz * self.num_heads, tgt_len, src_len)
attn_weights = attn_weights + attn_mask
if enc_dec_attn_constraint_mask is not None: # bs x head x L_kv
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
enc_dec_attn_constraint_mask.unsqueeze(2).bool(),
-1e8,
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
-1e8,
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_logits = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v
attn_weights_float = softmax(attn_weights, dim=-1)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
if reset_attn_weight is not None:
if reset_attn_weight:
self.last_attn_probs = attn_probs.detach()
else:
assert self.last_attn_probs is not None
attn_probs = self.last_attn_probs
attn = torch.bmm(attn_probs, v)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
if need_weights:
attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
else:
attn_weights = None
return attn, (attn_weights, attn_logits)
class RotMultiheadAttention2(MultiheadAttention):
def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0., bias=True,
add_bias_kv=False, add_zero_attn=False, self_attention=False,
encoder_decoder_attention=False):
super().__init__(embed_dim, num_heads, kdim=kdim, vdim=vdim, dropout=dropout, bias=bias,
add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=self_attention,
encoder_decoder_attention=encoder_decoder_attention)
self.rotary_embeds = RotaryEmbeddings(width=embed_dim // num_heads)
def forward(
self,
query, key, value,
spk_pos_ids_flat=None,
key_padding_mask=None,
incremental_state=None,
need_weights=True,
static_kv=False,
attn_mask=None,
before_softmax=False,
need_head_weights=False,
enc_dec_attn_constraint_mask=None,
reset_attn_weight=None
):
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
assert list(query.size()) == [tgt_len, bsz, embed_dim]
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if 'prev_key' in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
# self-attention
q, k, v = self.in_proj_qkv(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.in_proj_q(query)
if key is None:
assert value is None
k = v = None
else:
k = self.in_proj_k(key)
v = self.in_proj_v(key)
else:
q = self.in_proj_q(query)
k = self.in_proj_k(key)
v = self.in_proj_v(value)
if self.bias_k is not None:
assert self.bias_v is not None
k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1)], dim=1)
q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)
# Apply rot embedding and store incremental_state
q = self.rotary_embeds(q[None, :], positions=spk_pos_ids_flat)[0]
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if 'prev_key' in saved_state:
prev_key = saved_state['prev_key'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
k = torch.cat((prev_key, k), dim=1)
if 'prev_value' in saved_state:
prev_value = saved_state['prev_value'].view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
v = torch.cat((prev_value, v), dim=1)
saved_state['prev_key'], saved_state['prev_value'] = k.view(bsz, self.num_heads, -1, self.head_dim), v.view(
bsz, self.num_heads, -1, self.head_dim)
self._set_input_buffer(incremental_state, saved_state)
key_pos = torch.arange(k.shape[-2], device=q.device).unsqueeze(0)
k = self.rotary_embeds(k[None, :], positions=key_pos)[0]
src_len = k.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.shape == torch.Size([]):
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if attn_mask is not None:
if len(attn_mask.shape) == 2:
attn_mask = attn_mask.unsqueeze(0)
elif len(attn_mask.shape) == 3:
attn_mask = attn_mask[:, None].repeat([1, self.num_heads, 1, 1]).reshape(
bsz * self.num_heads, tgt_len, src_len)
attn = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=0, is_causal=False)
assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_logits = None
attn_weights = None
return attn, (attn_weights, attn_logits)
class RotDecSALayer(nn.Module):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1,
kernel_size=9, ffn_hidden_size=1024, act='gelu', post_ln=False, bias=True):
super().__init__()
self.c = c
self.dropout = dropout
self.layer_norm1 = LayerNorm(c)
self.self_attn = RotMultiheadAttention(
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False
)
self.layer_norm2 = LayerNorm(c)
self.ffn = TransformerFFNLayer(
c, ffn_hidden_size, padding='LEFT', kernel_size=kernel_size,
dropout=relu_dropout, act=act, bias=bias)
self.post_ln = post_ln
def forward(
self,
x,
encoder_out=None,
encoder_padding_mask=None,
incremental_state=None,
self_attn_mask=None,
self_attn_padding_mask=None,
attn_out=None,
reset_attn_weight=None,
spk_pos_ids_flat=None,
**kwargs,
):
layer_norm_training = kwargs.get('layer_norm_training', None)
if layer_norm_training is not None:
self.layer_norm1.training = layer_norm_training
self.layer_norm2.training = layer_norm_training
residual = x
if not self.post_ln:
x = self.layer_norm1(x)
x, (attn_weights, _) = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
incremental_state=incremental_state,
attn_mask=self_attn_mask,
spk_pos_ids_flat=spk_pos_ids_flat
)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
if self.post_ln:
x = self.layer_norm1(x)
residual = x
if not self.post_ln:
x = self.layer_norm2(x)
x = self.ffn(x, incremental_state=incremental_state)
x = F.dropout(x, self.dropout, training=self.training)
x = residual + x
if self.post_ln:
x = self.layer_norm2(x)
return x, attn_weights
def clear_buffer(self, input, encoder_out=None, encoder_padding_mask=None, incremental_state=None):
self.encoder_attn.clear_buffer(incremental_state)
self.ffn.clear_buffer(incremental_state)
def set_buffer(self, name, tensor, incremental_state):
return set_incremental_state(self, incremental_state, name, tensor)
class RotDecSALayer2(RotDecSALayer):
def __init__(self, c, num_heads, dropout, attention_dropout=0.1, relu_dropout=0.1, kernel_size=9,
ffn_hidden_size=1024, act='gelu', post_ln=False):
super().__init__(c, num_heads, dropout, attention_dropout, relu_dropout, kernel_size, ffn_hidden_size, act,
post_ln)
self.self_attn = RotMultiheadAttention2(
c, num_heads, self_attention=True, dropout=attention_dropout, bias=False
)
class RotTransformerDecoderLayer(nn.Module):
def __init__(self, hidden_size, dropout, kernel_size=9, num_heads=8, ffn_hidden_size=1024, post_ln=False,
op_version=1, bias=True):
super().__init__()
self.hidden_size = hidden_size
self.dropout = dropout
self.num_heads = num_heads
if op_version == 1:
self.op = RotDecSALayer(
hidden_size, num_heads, dropout=dropout,
attention_dropout=0.0, relu_dropout=dropout,
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size,
post_ln=post_ln, bias=bias)
else:
self.op = RotDecSALayer2(
hidden_size, num_heads, dropout=dropout,
attention_dropout=0.0, relu_dropout=dropout,
kernel_size=kernel_size, ffn_hidden_size=ffn_hidden_size,
post_ln=post_ln)
def forward(self, x, **kwargs):
return self.op(x, **kwargs)
def clear_buffer(self, *args):
return self.op.clear_buffer(*args)
def set_buffer(self, *args):
return self.op.set_buffer(*args)