import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "CHARKA/Llama-2-7b-chat-h-maroc_edu" | |
# Charger le modèle et le tokenizer depuis le Hub | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Fonction de génération de texte | |
def generate_text(input_text): | |
inputs = tokenizer.encode(input_text, return_tensors="pt") | |
outputs = model.generate(inputs, max_length=100, num_return_sequences=1) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Créer l'interface Gradio | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=gr.Textbox(lines=2, placeholder="أدخل طلبك هنا"), | |
outputs="text", | |
title="التفاعل مع النموذج", | |
description="اجهة تفاعل تستخدم نموذج توليد النصوص" | |
) | |
# Lancer l'interface | |
interface.launch() | |