ai / training /data_lib.py
CHEN11102's picture
Upload 47 files
2061d64 verified
raw
history blame
11.3 kB
# Copyright 2022 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Dataset creation for frame interpolation."""
from typing import Callable, Dict, List, Optional
from absl import logging
import gin.tf
import tensorflow as tf
def _create_feature_map() -> Dict[str, tf.io.FixedLenFeature]:
"""Creates the feature map for extracting the frame triplet."""
feature_map = {
'frame_0/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_0/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_0/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_0/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_1/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_1/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_1/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_1/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_2/encoded':
tf.io.FixedLenFeature((), tf.string, default_value=''),
'frame_2/format':
tf.io.FixedLenFeature((), tf.string, default_value='jpg'),
'frame_2/height':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'frame_2/width':
tf.io.FixedLenFeature((), tf.int64, default_value=0),
'path':
tf.io.FixedLenFeature((), tf.string, default_value=''),
}
return feature_map
def _parse_example(sample):
"""Parses a serialized sample.
Args:
sample: A serialized tf.Example to be parsed.
Returns:
dictionary containing the following:
encoded_image
image_height
image_width
"""
feature_map = _create_feature_map()
features = tf.io.parse_single_example(sample, feature_map)
output_dict = {
'x0': tf.io.decode_image(features['frame_0/encoded'], dtype=tf.float32),
'x1': tf.io.decode_image(features['frame_2/encoded'], dtype=tf.float32),
'y': tf.io.decode_image(features['frame_1/encoded'], dtype=tf.float32),
# The fractional time value of frame_1 is not included in our tfrecords,
# but is always at 0.5. The model will expect this to be specificed, so
# we insert it here.
'time': 0.5,
# Store the original mid frame filepath for identifying examples.
'path': features['path'],
}
return output_dict
def _random_crop_images(crop_size: int, images: tf.Tensor,
total_channel_size: int) -> tf.Tensor:
"""Crops the tensor with random offset to the given size."""
if crop_size > 0:
crop_shape = tf.constant([crop_size, crop_size, total_channel_size])
images = tf.image.random_crop(images, crop_shape)
return images
def crop_example(example: tf.Tensor, crop_size: int,
crop_keys: Optional[List[str]] = None):
"""Random crops selected images in the example to given size and keys.
Args:
example: Input tensor representing images to be cropped.
crop_size: The size to crop images to. This value is used for both
height and width.
crop_keys: The images in the input example to crop.
Returns:
Example with cropping applied to selected images.
"""
if crop_keys is None:
crop_keys = ['x0', 'x1', 'y']
channels = [3, 3, 3]
# Stack images along channel axis, and perform a random crop once.
image_to_crop = [example[key] for key in crop_keys]
stacked_images = tf.concat(image_to_crop, axis=-1)
cropped_images = _random_crop_images(crop_size, stacked_images, sum(channels))
cropped_images = tf.split(
cropped_images, num_or_size_splits=channels, axis=-1)
for key, cropped_image in zip(crop_keys, cropped_images):
example[key] = cropped_image
return example
def apply_data_augmentation(
augmentation_fns: Dict[str, Callable[..., tf.Tensor]],
example: tf.Tensor,
augmentation_keys: Optional[List[str]] = None) -> tf.Tensor:
"""Applies random augmentation in succession to selected image keys.
Args:
augmentation_fns: A Dict of Callables to data augmentation functions.
example: Input tensor representing images to be augmented.
augmentation_keys: The images in the input example to augment.
Returns:
Example with augmentation applied to selected images.
"""
if augmentation_keys is None:
augmentation_keys = ['x0', 'x1', 'y']
# Apply each augmentation in sequence
augmented_images = {key: example[key] for key in augmentation_keys}
for augmentation_function in augmentation_fns.values():
augmented_images = augmentation_function(augmented_images)
for key in augmentation_keys:
example[key] = augmented_images[key]
return example
def _create_from_tfrecord(batch_size, file, augmentation_fns,
crop_size) -> tf.data.Dataset:
"""Creates a dataset from TFRecord."""
dataset = tf.data.TFRecordDataset(file)
dataset = dataset.map(
_parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE)
# Perform data_augmentation before cropping and batching
if augmentation_fns is not None:
dataset = dataset.map(
lambda x: apply_data_augmentation(augmentation_fns, x),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
if crop_size > 0:
dataset = dataset.map(
lambda x: crop_example(x, crop_size=crop_size),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
def _generate_sharded_filenames(filename: str) -> List[str]:
"""Generates filenames of the each file in the sharded filepath.
Based on github.com/google/revisiting-self-supervised/blob/master/datasets.py.
Args:
filename: The sharded filepath.
Returns:
A list of filepaths for each file in the shard.
"""
base, count = filename.split('@')
count = int(count)
return ['{}-{:05d}-of-{:05d}'.format(base, i, count) for i in range(count)]
def _create_from_sharded_tfrecord(batch_size,
train_mode,
file,
augmentation_fns,
crop_size,
max_examples=-1) -> tf.data.Dataset:
"""Creates a dataset from a sharded tfrecord."""
dataset = tf.data.Dataset.from_tensor_slices(
_generate_sharded_filenames(file))
# pylint: disable=g-long-lambda
dataset = dataset.interleave(
lambda x: _create_from_tfrecord(
batch_size,
file=x,
augmentation_fns=augmentation_fns,
crop_size=crop_size),
num_parallel_calls=tf.data.AUTOTUNE,
deterministic=not train_mode)
# pylint: enable=g-long-lambda
dataset = dataset.prefetch(buffer_size=2)
if max_examples > 0:
return dataset.take(max_examples)
return dataset
@gin.configurable('training_dataset')
def create_training_dataset(
batch_size: int,
file: Optional[str] = None,
files: Optional[List[str]] = None,
crop_size: int = -1,
crop_sizes: Optional[List[int]] = None,
augmentation_fns: Optional[Dict[str, Callable[..., tf.Tensor]]] = None
) -> tf.data.Dataset:
"""Creates the training dataset.
The given tfrecord should contain data in a format produced by
frame_interpolation/datasets/create_*_tfrecord.py
Args:
batch_size: The number of images to batch per example.
file: (deprecated) A path to a sharded tfrecord in <tfrecord>@N format.
Deprecated. Use 'files' instead.
files: A list of paths to sharded tfrecords in <tfrecord>@N format.
crop_size: (deprecated) If > 0, images are cropped to crop_size x crop_size
using tensorflow's random cropping. Deprecated: use 'files' and
'crop_sizes' instead.
crop_sizes: List of crop sizes. If > 0, images are cropped to
crop_size x crop_size using tensorflow's random cropping.
augmentation_fns: A Dict of Callables to data augmentation functions.
Returns:
A tensorflow dataset for accessing examples that contain the input images
'x0', 'x1', ground truth 'y' and time of the ground truth 'time'=[0,1] in a
dictionary of tensors.
"""
if file:
logging.warning('gin-configurable training_dataset.file is deprecated. '
'Use training_dataset.files instead.')
return _create_from_sharded_tfrecord(batch_size, True, file,
augmentation_fns, crop_size)
else:
if not crop_sizes or len(crop_sizes) != len(files):
raise ValueError('Please pass crop_sizes[] with training_dataset.files.')
if crop_size > 0:
raise ValueError(
'crop_size should not be used with files[], use crop_sizes[] instead.'
)
tables = []
for file, crop_size in zip(files, crop_sizes):
tables.append(
_create_from_sharded_tfrecord(batch_size, True, file,
augmentation_fns, crop_size))
return tf.data.experimental.sample_from_datasets(tables)
@gin.configurable('eval_datasets')
def create_eval_datasets(batch_size: int,
files: List[str],
names: List[str],
crop_size: int = -1,
max_examples: int = -1) -> Dict[str, tf.data.Dataset]:
"""Creates the evaluation datasets.
As opposed to create_training_dataset this function makes sure that the
examples for each dataset are always read in a deterministic (same) order.
Each given tfrecord should contain data in a format produced by
frame_interpolation/datasets/create_*_tfrecord.py
The (batch_size, crop_size, max_examples) are specified for all eval datasets.
Args:
batch_size: The number of images to batch per example.
files: List of paths to a sharded tfrecord in <tfrecord>@N format.
names: List of names of eval datasets.
crop_size: If > 0, images are cropped to crop_size x crop_size using
tensorflow's random cropping.
max_examples: If > 0, truncate the dataset to 'max_examples' in length. This
can be useful for speeding up evaluation loop in case the tfrecord for the
evaluation set is very large.
Returns:
A dict of name to tensorflow dataset for accessing examples that contain the
input images 'x0', 'x1', ground truth 'y' and time of the ground truth
'time'=[0,1] in a dictionary of tensors.
"""
return {
name: _create_from_sharded_tfrecord(batch_size, False, file, None,
crop_size, max_examples)
for name, file in zip(names, files)
}