File size: 2,945 Bytes
d6ed348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import pandas as pd
from sklearn.model_selection import train_test_split
from google.colab import drive
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import BertTokenizer, BertForSequenceClassification, AdamW
from sklearn.metrics import accuracy_score, classification_report

dataset_path = ""
model_path = ""

news_df = pd.read_csv(dataset_path)

X = news_df['title']
y = news_df['labels']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1) # 0.25 x 0.8 = 0.2

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')


def tokenize_data(texts, tokenizer, max_len=128):
    return tokenizer(
        list(texts),
        padding=True,
        truncation=True,
        max_length=max_len,
        return_tensors="pt"
    )

# Tokenize the training and test datasets
train_encodings = tokenize_data(X_train, tokenizer)
test_encodings = tokenize_data(X_test, tokenizer)

# Create a custom Dataset class
class NewsDataset(Dataset):
    def __init__(self, encodings, labels):
        self.encodings = encodings
        self.labels = labels

    def __len__(self):
        return len(self.labels)

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

train_dataset = NewsDataset(train_encodings, y_train.tolist())
test_dataset = NewsDataset(test_encodings, y_test.tolist())

# Load DataLoader for batching
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=16)

model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
model.load_state_dict(torch.load(model_path))

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)

# Define optimizer and scheduler
# optimizer = AdamW(model.parameters(), lr=5e-5)
# num_training_steps = len(train_loader) * 4  # Assume 4 epochs
# lr_scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)

# Evaluate the model
def evaluate_model(model, test_loader):
    model.eval()
    y_true, y_pred = [], []
    with torch.no_grad():
        for batch in test_loader:
            batch = {k: v.to(device) for k, v in batch.items()}
            outputs = model(**batch)
            logits = outputs.logits
            predictions = torch.argmax(logits, dim=-1)
            y_true.extend(batch['labels'].tolist())
            y_pred.extend(predictions.tolist())
    return y_true, y_pred

y_true, y_pred = evaluate_model(model, test_loader)

# Print evaluation metrics
print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
print("Classification Report:\n", classification_report(y_true, y_pred))