annabellatian commited on
Commit
78bbd20
·
verified ·
1 Parent(s): d6ed348

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -88
README.md CHANGED
@@ -1,89 +1,2 @@
1
  ## Evaluation Pipeline
2
- # Use the raw version of the text below to evaluate the model. Make sure to set the dataset and model path.
3
-
4
- import pandas as pd
5
- from sklearn.model_selection import train_test_split
6
- from google.colab import drive
7
- import torch
8
- from torch.utils.data import Dataset, DataLoader
9
- from transformers import BertTokenizer, BertForSequenceClassification, AdamW
10
- from sklearn.metrics import accuracy_score, classification_report
11
-
12
- dataset_path = ""
13
- model_path = ""
14
-
15
- news_df = pd.read_csv(dataset_path)
16
-
17
- X = news_df['title']
18
- y = news_df['labels']
19
-
20
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
21
- X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.25, random_state=1) # 0.25 x 0.8 = 0.2
22
-
23
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
24
-
25
-
26
- def tokenize_data(texts, tokenizer, max_len=128):
27
- return tokenizer(
28
- list(texts),
29
- padding=True,
30
- truncation=True,
31
- max_length=max_len,
32
- return_tensors="pt"
33
- )
34
-
35
- # Tokenize the training and test datasets
36
- train_encodings = tokenize_data(X_train, tokenizer)
37
- test_encodings = tokenize_data(X_test, tokenizer)
38
-
39
- # Create a custom Dataset class
40
- class NewsDataset(Dataset):
41
- def __init__(self, encodings, labels):
42
- self.encodings = encodings
43
- self.labels = labels
44
-
45
- def __len__(self):
46
- return len(self.labels)
47
-
48
- def __getitem__(self, idx):
49
- item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
50
- item['labels'] = torch.tensor(self.labels[idx])
51
- return item
52
-
53
- train_dataset = NewsDataset(train_encodings, y_train.tolist())
54
- test_dataset = NewsDataset(test_encodings, y_test.tolist())
55
-
56
- # Load DataLoader for batching
57
- train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
58
- test_loader = DataLoader(test_dataset, batch_size=16)
59
-
60
- model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
61
- model.load_state_dict(torch.load(model_path))
62
-
63
- device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
64
- model.to(device)
65
-
66
- # Define optimizer and scheduler
67
- # optimizer = AdamW(model.parameters(), lr=5e-5)
68
- # num_training_steps = len(train_loader) * 4 # Assume 4 epochs
69
- # lr_scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps)
70
-
71
- # Evaluate the model
72
- def evaluate_model(model, test_loader):
73
- model.eval()
74
- y_true, y_pred = [], []
75
- with torch.no_grad():
76
- for batch in test_loader:
77
- batch = {k: v.to(device) for k, v in batch.items()}
78
- outputs = model(**batch)
79
- logits = outputs.logits
80
- predictions = torch.argmax(logits, dim=-1)
81
- y_true.extend(batch['labels'].tolist())
82
- y_pred.extend(predictions.tolist())
83
- return y_true, y_pred
84
-
85
- y_true, y_pred = evaluate_model(model, test_loader)
86
-
87
- # Print evaluation metrics
88
- print(f"Accuracy: {accuracy_score(y_true, y_pred):.4f}")
89
- print("Classification Report:\n", classification_report(y_true, y_pred))
 
1
  ## Evaluation Pipeline
2
+ # Use eval_pipeline.py to evaluate the model. Make sure to set the dataset and model path.