ZhongJingGPT / app.py
CMLL's picture
Update app.py
b1d449b verified
raw
history blame
4 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
USE_CUDA = torch.cuda.is_available()
device_ids_parallel = [0]
device = torch.device("cuda:{}".format(device_ids_parallel[0]) if USE_CUDA else "cpu")
# 初始化
peft_model_id = "CMLM/ZhongJing-2-1_8b"
base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
model.load_adapter(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(
"CMLM/ZhongJing-2-1_8b",
padding_side="right",
trust_remote_code=True,
pad_token=''
)
#单轮
@spaces.GPU
def single_turn_chat(question):
prompt = f"Question: {question}"
messages = [
{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
{"role": "user", "content": prompt}
]
input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([input], return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
#多轮
@spaces.GPU
def multi_turn_chat(question, chat_history=None):
if not isinstance(question, str):
raise ValueError("The question must be a string.")
if chat_history is None or chat_history == []:
chat_history = [{"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."}]
chat_history.append({"role": "user", "content": question})
# Apply the chat template and prepare the input
inputs = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([inputs], return_tensors="pt").to(device)
try:
# Generate the response from the model
outputs = model.generate(model_inputs.input_ids, max_new_tokens=512)
generated_ids = outputs[:, model_inputs.input_ids.shape[-1]:]
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
except Exception as e:
raise RuntimeError("Error in model generation: " + str(e))
# Append the assistant's response to the chat history
chat_history.append({"role": "assistant", "content": response})
# Format the chat history for output
tempass = ""
tempuser = ""
formatted_history = []
for entry in chat_history:
if entry['role'] == 'user':
tempuser = entry['content']
elif entry['role'] == 'assistant':
tempass = entry['content']
temp = (tempuser, tempass)
formatted_history.append(temp)
return formatted_history, chat_history
def clear_history():
return [], []
# 单轮界面
single_turn_interface = gr.Interface(
fn=single_turn_chat,
inputs=["text"],
outputs="text",
title="仲景GPT-V2-1.8B 单轮对话",
description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
)
# 多轮界面
with gr.Blocks() as multi_turn_interface:
chatbot = gr.Chatbot(label="仲景GPT-V2-1.8B 多轮对话")
state = gr.State([])
with gr.Row():
with gr.Column(scale=6):
user_input = gr.Textbox(label="输入", placeholder="输入你的问题")
with gr.Column(scale=6):
submit_button = gr.Button("发送")
submit_button.click(multi_turn_chat, [user_input, state], [chatbot, state])
user_input.submit(multi_turn_chat, [user_input, state], [chatbot, state])
single_turn_interface.launch()
multi_turn_interface.launch()