Spaces:
Sleeping
Sleeping
File size: 6,006 Bytes
cf8a522 92f45fe 7716c5c 8e1d297 92f45fe 8e1d297 4c77f62 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe 9753cc9 92f45fe 50528fd 92f45fe 7716c5c 92f45fe 8e1d297 7716c5c 50528fd 7716c5c 50528fd 7716c5c d836318 7716c5c 50528fd 7716c5c d836318 7716c5c 50528fd 7716c5c 50528fd 7716c5c 50528fd 7716c5c 50528fd 7716c5c d836318 50528fd d836318 50528fd d836318 50528fd d836318 50528fd d836318 7716c5c 8e1d297 6088e9d 8e1d297 6088e9d 50528fd 8e1d297 50528fd 7716c5c 50528fd d836318 8e1d297 586dcd2 8e1d297 50528fd 7716c5c 50528fd 7716c5c 8e1d297 7716c5c 8e1d297 d836318 8e1d297 9753cc9 8e1d297 d836318 7716c5c d836318 50528fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import tempfile
import re
import streamlit as st
import docx
import textract
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join([para.text for para in document.paragraphs])
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# textract requires a filename; solve this using a temporary file.
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp.flush()
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
except Exception as e:
text = f"Error processing DOC file: {e}"
finally:
try:
os.remove(tmp_filename)
except Exception:
pass
else:
text = "Unsupported file type."
return text
#####################################
# Function: Extract Basic Resume Information
#####################################
def extract_basic_resume_info(text):
"""
Parse the extracted text to summarize basic info:
- Name
- Age
- Job Experience (years or descriptive)
- Skills
- Education
Returns a dictionary with the extracted elements.
"""
info = {
"Name": None,
"Age": None,
"Job Experience": None,
"Skills": None,
"Education": None,
}
# Extract Name (e.g., "Name: John Doe")
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s]+)", text)
if name_match:
info["Name"] = name_match.group(1).strip()
else:
# Fallback: heuristic, assume the first two or three capitalized words are the candidate name.
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
if potential_names:
info["Name"] = potential_names[0]
# Extract Age (e.g., "Age: 28")
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,2})", text)
if age_match:
info["Age"] = age_match.group(1)
# Extract Job Experience (e.g., "5 years of experience")
exp_match = re.search(r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
if exp_match:
info["Job Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}"
else:
# Attempt to capture a descriptive work experience line via a labeled section.
exp_line = re.search(r"(Experience|Work History)[:\-]\s*(.+)", text, re.IGNORECASE)
if exp_line:
info["Job Experience"] = exp_line.group(2).strip()
# Extract Skills (e.g., "Skills: Python, Java, SQL")
# This is a simple pattern and might require refinement for your resume formats.
skills_match = re.search(r"(Skills|Technical Skills)[:\-]\s*(.+)", text, re.IGNORECASE)
if skills_match:
# Cleanup skills by removing any trailing or extra characters.
skills_str = skills_match.group(2).strip()
info["Skills"] = skills_str.rstrip(".")
# Extract Education (e.g., "Education: B.Sc in Computer Science")
edu_match = re.search(r"Education[:\-]\s*(.+)", text, re.IGNORECASE)
if edu_match:
edu_str = edu_match.group(1).strip()
info["Education"] = edu_str.rstrip(".")
return info
#####################################
# Function: Summarize Basic Info into a Paragraph
#####################################
def summarize_basic_info(info):
"""
Combine the extracted basic resume information into a cohesive paragraph.
"""
parts = []
if info.get("Name"):
parts.append(f"Candidate {info['Name']}")
else:
parts.append("The candidate")
if info.get("Age"):
parts.append(f"aged {info['Age']}")
if info.get("Job Experience"):
parts.append(f"with {info['Job Experience']} of work experience")
if info.get("Skills"):
parts.append(f"skilled in {info['Skills']}")
if info.get("Education"):
parts.append(f"and educated with a background in {info['Education']}")
summary_paragraph = ", ".join(parts) + "."
return summary_paragraph
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj):
if file_obj is None:
return None, None
# Extract the full resume text.
resume_text = extract_text_from_file(file_obj)
# Extract basic info from the text.
basic_info = extract_basic_resume_info(resume_text)
# Create a summary paragraph from the extracted info.
summary_paragraph = summarize_basic_info(basic_info)
return resume_text, summary_paragraph
#####################################
# Streamlit Interface
#####################################
st.title("Resume Basic Information Summary")
st.markdown("""
Upload your resume file in **.doc** or **.docx** format. The app will extract the document's content and generate a summary paragraph
highlighting the candidate’s name, age, job experience, skills, and education.
""")
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
if st.button("Process Resume"):
if uploaded_file is None:
st.error("Please upload a file first.")
else:
with st.spinner("Processing resume..."):
resume_text, summary_paragraph = process_resume(uploaded_file)
st.subheader("Summary of Basic Information")
st.markdown(summary_paragraph)
st.subheader("Full Extracted Resume Text")
st.text_area("", resume_text, height=300) |