Spaces:
Sleeping
Sleeping
File size: 32,512 Bytes
fa79427 fc55093 fa79427 fc55093 d2d6501 fc55093 d3c5eab 848089c fc55093 d3c5eab fc55093 ca31f44 fc55093 5d07781 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 d3c5eab fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 fa79427 fc55093 848089c fc55093 97150aa fc55093 848089c ce7c5e8 fc55093 848089c d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 848089c fc55093 d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 d3c5eab fc55093 848089c fc55093 848089c d3c5eab fc55093 848089c fc55093 848089c fc55093 848089c fc55093 848089c fc55093 848089c d3c5eab fc55093 3e9d890 fc55093 5be9ab6 fc55093 8057156 fc55093 8057156 fc55093 8057156 fc55093 8057156 fc55093 848089c fc55093 8057156 fc55093 8057156 fc55093 8057156 fc55093 d3c5eab fc55093 7733908 fc55093 ee0c7bb fc55093 ee0c7bb fc55093 92e31bf fc55093 ee0c7bb fc55093 92e31bf 5be9ab6 bd6afd6 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 92e31bf 5be9ab6 ee0c7bb 5be9ab6 ee0c7bb fc55093 848089c fc55093 d3c5eab fa79427 fc55093 d3c5eab fa79427 fc55093 848089c fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 5be9ab6 fc55093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
import time
import re
import math
import concurrent.futures
import pandas as pd
from functools import lru_cache
from transformers import pipeline
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume-Job Fit Analyzer",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Use bart-base for summarization
models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
max_length=100,
truncation=True
)
# Load sentiment model for evaluation
models['evaluator'] = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
@st.cache_data(show_spinner=False)
def extract_text_from_file(file_obj):
"""
Extract text from .docx and .doc files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
# Limit text size for faster processing
return text[:15000] if text else text
#####################################
# Functions for Information Extraction
#####################################
# Cache the extraction functions to avoid reprocessing
@lru_cache(maxsize=32)
def extract_name(text_start):
"""Extract candidate name from the beginning of resume text"""
# Only use the first 500 characters to speed up processing
lines = text_start.split('\n')
# Check first few non-empty lines for potential names
potential_name_lines = [line.strip() for line in lines[:5] if line.strip()]
if potential_name_lines:
# First line is often the name if it's short and doesn't contain common headers
first_line = potential_name_lines[0]
if 5 <= len(first_line) <= 40 and not any(x in first_line.lower() for x in ["resume", "cv", "curriculum", "vitae", "profile"]):
return first_line
# Look for lines that might contain a name
for line in potential_name_lines[:3]:
if len(line.split()) <= 4 and not any(x in line.lower() for x in ["address", "phone", "email", "resume", "cv"]):
return line
return "Unknown (please extract from resume)"
def extract_age(text):
"""Extract candidate age from resume text"""
# Simplified: just check a few common patterns
age_patterns = [
r'age:?\s*(\d{1,2})',
r'(\d{1,2})\s*years\s*old',
]
text_lower = text.lower()
for pattern in age_patterns:
matches = re.search(pattern, text_lower)
if matches:
return matches.group(1)
return "Not specified"
def extract_industry(text, base_summary):
"""Extract expected job industry from resume"""
# Simplified industry keywords focused on the most common ones
industry_keywords = {
"technology": ["software", "programming", "developer", "IT", "tech", "computer"],
"finance": ["banking", "financial", "accounting", "finance", "analyst"],
"healthcare": ["medical", "health", "hospital", "clinical", "nurse", "doctor"],
"education": ["teaching", "teacher", "professor", "education", "university"],
"marketing": ["marketing", "advertising", "digital marketing", "social media"],
"engineering": ["engineer", "engineering"],
"data science": ["data science", "machine learning", "AI", "analytics"],
"information systems": ["information systems", "ERP", "systems management"]
}
# Count occurrences of industry keywords - using the summary to speed up
combined_text = base_summary.lower()
counts = {}
for industry, keywords in industry_keywords.items():
counts[industry] = sum(combined_text.count(keyword.lower()) for keyword in keywords)
# Get the industry with the highest count
if counts:
likely_industry = max(counts.items(), key=lambda x: x[1])
if likely_industry[1] > 0:
return likely_industry[0].capitalize()
# Check for educational background that might indicate industry
degrees = ["computer science", "business", "engineering", "medicine", "education", "finance", "marketing"]
for degree in degrees:
if degree in combined_text:
return f"{degree.capitalize()}-related field"
return "Not clearly specified"
def extract_skills_and_work(text):
"""Extract both skills and work experience at once to save processing time"""
# Common skill categories - reduced keyword list for speed
skill_categories = {
"Programming": ["Python", "Java", "JavaScript", "HTML", "CSS", "SQL", "C++", "C#", "Go"],
"Data Science": ["Machine Learning", "Data Analysis", "Statistics", "TensorFlow", "PyTorch", "AI", "Algorithms"],
"Database": ["SQL", "MySQL", "MongoDB", "Database", "NoSQL", "PostgreSQL"],
"Web Development": ["React", "Angular", "Node.js", "Frontend", "Backend", "Full-Stack"],
"Software Development": ["Agile", "Scrum", "Git", "DevOps", "Docker", "System Design"],
"Cloud": ["AWS", "Azure", "Google Cloud", "Cloud Computing"],
"Security": ["Cybersecurity", "Network Security", "Encryption", "Security"],
"Business": ["Project Management", "Business Analysis", "Leadership", "Teamwork"],
"Design": ["UX/UI", "User Experience", "Design Thinking", "Adobe"]
}
# Work experience extraction
work_headers = [
"work experience", "professional experience", "employment history",
"work history", "experience"
]
next_section_headers = [
"education", "skills", "certifications", "projects", "achievements"
]
# Process everything at once
lines = text.split('\n')
text_lower = text.lower()
# Skills extraction
found_skills = []
for category, skills in skill_categories.items():
category_skills = []
for skill in skills:
if skill.lower() in text_lower:
category_skills.append(skill)
if category_skills:
found_skills.append(f"{category}: {', '.join(category_skills)}")
# Work experience extraction - simplified approach
work_section = []
in_work_section = False
for idx, line in enumerate(lines):
line_lower = line.lower().strip()
# Start of work section
if not in_work_section:
if any(header in line_lower for header in work_headers):
in_work_section = True
continue
# End of work section
elif in_work_section:
if any(header in line_lower for header in next_section_headers):
break
if line.strip():
work_section.append(line.strip())
# Simplified work formatting
if not work_section:
work_experience = "Work experience not clearly identified"
else:
# Just take the first 5-7 lines of the work section as a summary
work_lines = []
company_count = 0
current_company = ""
for line in work_section:
# New company entry often has a date
if re.search(r'(19|20)\d{2}', line):
company_count += 1
if company_count <= 3: # Limit to 3 most recent positions
current_company = line
work_lines.append(f"**{line}**")
else:
break
elif company_count <= 3 and len(work_lines) < 10: # Limit total lines
work_lines.append(line)
work_experience = "\n• " + "\n• ".join(work_lines[:7]) if work_lines else "Work experience not clearly structured"
skills_formatted = "\n• " + "\n• ".join(found_skills) if found_skills else "No specific technical skills clearly identified"
return skills_formatted, work_experience
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text):
"""
Generates a structured summary of the resume text
"""
start_time = time.time()
# First, generate a quick summary using pre-loaded model
max_input_length = 1024 # Model limit
# Only summarize the first portion of text for speed
text_to_summarize = resume_text[:min(len(resume_text), max_input_length)]
base_summary = models['summarizer'](text_to_summarize)[0]['summary_text']
# Extract information in parallel where possible
with concurrent.futures.ThreadPoolExecutor() as executor:
# These can run in parallel
name_future = executor.submit(extract_name, resume_text[:500]) # Only use start of text
age_future = executor.submit(extract_age, resume_text)
industry_future = executor.submit(extract_industry, resume_text, base_summary)
skills_work_future = executor.submit(extract_skills_and_work, resume_text)
# Get results
name = name_future.result()
age = age_future.result()
industry = industry_future.result()
skills, work_experience = skills_work_future.result()
# Format the structured summary
formatted_summary = f"Name: {name}\n"
formatted_summary += f"Age: {age}\n"
formatted_summary += f"Expected Job Industry: {industry}\n\n"
formatted_summary += f"Previous Work Experience: {work_experience}\n\n"
formatted_summary += f"Skills: {skills}"
execution_time = time.time() - start_time
return formatted_summary, execution_time
#####################################
# Function: Extract Job Requirements
#####################################
def extract_job_requirements(job_description):
"""
Extract key requirements and skills from a job description
"""
# Common technical skill categories to look for
tech_skill_categories = {
"programming_languages": ["Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL", "Ruby", "PHP", "Swift", "Kotlin"],
"web_technologies": ["React", "Angular", "Vue", "Node.js", "HTML", "CSS", "Django", "Flask", "Spring", "REST API", "GraphQL"],
"data_tech": ["Machine Learning", "TensorFlow", "PyTorch", "Data Science", "AI", "Big Data", "Deep Learning", "NLP", "Computer Vision"],
"cloud_devops": ["AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions", "Terraform", "Serverless"],
"database": ["SQL", "MySQL", "PostgreSQL", "MongoDB", "Redis", "Elasticsearch", "DynamoDB", "Cassandra"],
}
# Common soft skills to look for
soft_skills = ["Communication", "Leadership", "Teamwork", "Problem-solving", "Critical thinking", "Adaptability", "Creativity", "Time management"]
# Clean the text for processing
clean_job_text = job_description.lower()
# Extract job title
title_patterns = [
r'^([^:.\n]+?)(position|role|job|opening|vacancy)',
r'^([^:.\n]+?)\n',
r'(hiring|looking for(?: a| an)?|recruiting)(?: a| an)? ([^:.\n]+?)(:-|[.:]|\n|$)'
]
job_title = "Not specified"
for pattern in title_patterns:
title_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if title_match:
potential_title = title_match.group(1).strip() if len(title_match.groups()) >= 1 else title_match.group(2).strip()
if 3 <= len(potential_title) <= 50: # Reasonable title length
job_title = potential_title.capitalize()
break
# Extract years of experience
exp_patterns = [
r'(\d+)(?:\+)?\s*(?:years|yrs)(?:\s*of)?\s*(?:experience|exp)',
r'experience\s*(?:of)?\s*(\d+)(?:\+)?\s*(?:years|yrs)'
]
years_required = 0
for pattern in exp_patterns:
exp_match = re.search(pattern, clean_job_text, re.IGNORECASE)
if exp_match:
try:
years_required = int(exp_match.group(1))
break
except:
pass
# Extract technical skills
found_tech_skills = {}
all_tech_skills = []
for category, skills in tech_skill_categories.items():
category_skills = []
for skill in skills:
if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text):
category_skills.append(skill)
all_tech_skills.append(skill)
if category_skills:
found_tech_skills[category] = category_skills
# Extract soft skills
found_soft_skills = []
for skill in soft_skills:
if re.search(r'\b' + re.escape(skill.lower()) + r'\b', clean_job_text):
found_soft_skills.append(skill)
# Extract educational requirements
edu_patterns = [
r"bachelor'?s degree|bs|b\.s\.",
r"master'?s degree|ms|m\.s\.",
r"phd|ph\.d\.|doctorate",
r"mba|m\.b\.a\."
]
education_required = []
for pattern in edu_patterns:
if re.search(pattern, clean_job_text, re.IGNORECASE):
edu_match = re.search(pattern, clean_job_text, re.IGNORECASE).group(0)
education_required.append(edu_match.capitalize())
# Format the job requirements
job_requirements = {
"title": job_title,
"years_experience": years_required,
"technical_skills": all_tech_skills,
"soft_skills": found_soft_skills,
"education": education_required,
}
return job_requirements
#####################################
# Function: Analyze Job Fit
#####################################
def analyze_job_fit(resume_summary, job_description):
"""
Analyze how well the candidate fits the job requirements with the DistilBERT sentiment model.
"""
start_time = time.time()
# Extract job requirements
job_requirements = extract_job_requirements(job_description)
# Define skill categories to evaluate against
resume_lower = resume_summary.lower()
job_lower = job_description.lower()
# Define keyword categories based on the job description
# We'll dynamically build these based on the job requirements
skill_keywords = {
"technical_skills": job_requirements["technical_skills"],
"soft_skills": job_requirements["soft_skills"],
"education": job_requirements["education"],
}
# Add additional keywords from the job description for comprehensive analysis
additional_keywords = {
"problem_solving": ["problem solving", "analytical", "critical thinking", "troubleshooting", "debugging",
"optimization", "solution", "resolve", "analyze"],
"domain_knowledge": ["industry", "experience", "expertise", "knowledge", "familiar with", "understanding of"],
"collaboration": ["team", "collaborate", "cooperation", "cross-functional", "communication", "stakeholder"]
}
# Merge the keywords
skill_keywords.update(additional_keywords)
# Category weights with descriptive labels
category_weights = {
"technical_skills": {"weight": 0.40, "label": "Technical Skills"},
"soft_skills": {"weight": 0.15, "label": "Soft Skills"},
"education": {"weight": 0.10, "label": "Education"},
"problem_solving": {"weight": 0.15, "label": "Problem Solving"},
"domain_knowledge": {"weight": 0.10, "label": "Domain Knowledge"},
"collaboration": {"weight": 0.10, "label": "Collaboration"}
}
# Calculate category scores and store detailed information
category_scores = {}
category_details = {}
found_skills = {}
for category, keywords in skill_keywords.items():
if not keywords: # Skip empty categories
category_scores[category] = 0.0
category_details[category] = {
"raw_percentage": 0,
"adjusted_score": 0,
"matching_keywords": [],
"total_keywords": 0,
"matches": 0
}
found_skills[category] = []
continue
# Find the specific matching keywords for feedback
category_matches = []
for keyword in keywords:
if keyword.lower() in resume_lower:
category_matches.append(keyword)
found_skills[category] = category_matches
# Count matches but cap at a reasonable level
matches = len(category_matches)
total_keywords = len(keywords)
# Calculate raw percentage for this category
raw_percentage = int((matches / max(1, total_keywords)) * 100)
# Apply logarithmic scaling for more realistic scores
if matches == 0:
adjusted_score = 0.0
else:
# Logarithmic scaling to prevent perfect scores
adjusted_score = min(0.95, (math.log(matches + 1) / math.log(min(total_keywords, 8) + 1)))
# Store both raw and adjusted scores for feedback
category_scores[category] = adjusted_score
category_details[category] = {
"raw_percentage": raw_percentage,
"adjusted_score": int(adjusted_score * 100),
"matching_keywords": category_matches,
"total_keywords": total_keywords,
"matches": matches
}
# Check for years of experience match
years_required = job_requirements["years_experience"]
# Extract years of experience from resume
experience_years = 0
year_patterns = [
r'(\d+)\s*(?:\+)?\s*years?\s*(?:of)?\s*experience',
r'experience\s*(?:of)?\s*(\d+)\s*(?:\+)?\s*years?'
]
for pattern in year_patterns:
exp_match = re.search(pattern, resume_lower)
if exp_match:
try:
experience_years = int(exp_match.group(1))
break
except:
pass
# If we couldn't find explicit years, try to count based on work history
if experience_years == 0:
# Try to extract from work experience section
work_exp_match = re.search(r'work experience:(.*?)(?=\n\n|$)', resume_summary, re.IGNORECASE | re.DOTALL)
if work_exp_match:
work_text = work_exp_match.group(1).lower()
years = re.findall(r'(\d{4})\s*-\s*(\d{4}|present|current)', work_text)
total_years = 0
for year_range in years:
start_year = int(year_range[0])
if year_range[1].isdigit():
end_year = int(year_range[1])
else:
end_year = 2025 # Assume "present" is current year
total_years += (end_year - start_year)
experience_years = total_years
# Calculate experience match score
if years_required > 0:
if experience_years >= years_required:
exp_score = 1.0
else:
exp_score = experience_years / years_required
else:
exp_score = 1.0 # If no specific years required, assume full match
category_scores["experience"] = exp_score
category_details["experience"] = {
"raw_percentage": int(exp_score * 100),
"adjusted_score": int(exp_score * 100),
"candidate_years": experience_years,
"required_years": years_required
}
# Calculate weighted score
weighted_score = 0
for category, score in category_scores.items():
if category in category_weights:
weighted_score += score * category_weights[category]["weight"]
# Add experience separately (not in the original weights)
weighted_score = (weighted_score * 0.8) + (category_scores["experience"] * 0.2)
# Apply final curve to keep scores in a realistic range
match_percentage = min(95, max(35, int(weighted_score * 100)))
# Prepare input for sentiment analysis
# Create a structured summary of the match for sentiment model
match_summary = f"""
Job title: {job_requirements['title']}
Match percentage: {match_percentage}%
Technical skills match: {category_details['technical_skills']['adjusted_score']}%
Required technical skills: {', '.join(job_requirements['technical_skills'][:5])}
Candidate has: {', '.join(found_skills['technical_skills'][:5])}
Experience match: {category_details['experience']['adjusted_score']}%
Required years: {job_requirements['years_experience']}
Candidate years: {experience_years}
Education match: {category_details['education']['adjusted_score']}%
Overall profile match: The candidate's skills and experience appear to {match_percentage >= 70 and "match well with" or "partially match with"} the job requirements.
"""
# Use the sentiment model to get a fit classification
sentiment_result = models['evaluator'](match_summary)
# Map sentiment analysis to our score:
# NEGATIVE = 0 (poor fit)
# POSITIVE = 1 (good fit)
score_mapping = {
"NEGATIVE": 0,
"POSITIVE": 1
}
# Get the sentiment score
sentiment_score = score_mapping.get(sentiment_result[0]['label'], 0)
# Adjust the score based on the match percentage to get our 0,1,2 scale
if sentiment_score == 1 and match_percentage >= 85:
final_score = 2 # Excellent fit
elif sentiment_score == 1:
final_score = 1 # Good fit
else:
final_score = 0 # Poor fit
# Map to fit status
fit_status_map = {
0: "NOT FIT",
1: "POTENTIAL FIT",
2: "STRONG FIT"
}
fit_status = fit_status_map[final_score]
# Generate assessment summary based on the score
if final_score == 2:
assessment = f"{final_score}: The candidate is a strong match for this {job_requirements['title']} position, with excellent alignment in technical skills and experience. Their background demonstrates the required expertise in key areas such as {', '.join(found_skills['technical_skills'][:3]) if found_skills['technical_skills'] else 'relevant technical domains'}, and they possess the necessary {experience_years} years of experience (required: {years_required})."
elif final_score == 1:
assessment = f"{final_score}: The candidate shows potential for this {job_requirements['title']} position, with some good matches in required skills. They demonstrate experience with {', '.join(found_skills['technical_skills'][:2]) if found_skills['technical_skills'] else 'some relevant technologies'}, but may need development in areas like {', '.join(set(job_requirements['technical_skills']) - set(found_skills['technical_skills']))[:2] if set(job_requirements['technical_skills']) - set(found_skills['technical_skills']) else 'specific technical requirements'}."
else:
assessment = f"{final_score}: The candidate does not appear to be a strong match for this {job_requirements['title']} position. Their profile shows limited alignment with key requirements, particularly in {', '.join(set(job_requirements['technical_skills']) - set(found_skills['technical_skills']))[:3] if set(job_requirements['technical_skills']) - set(found_skills['technical_skills']) else 'required technical skills'}, and they have {experience_years} years of experience (required: {years_required})."
execution_time = time.time() - start_time
return assessment, final_score, match_percentage, category_details, job_requirements, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume-Job Fit Analyzer")
st.markdown(
"""
Upload your resume file in **.docx**, **.doc**, or **.txt** format and enter a job description to see how well you match with the job requirements. The app performs the following tasks:
1. Extracts text from your resume.
2. Uses AI to generate a structured candidate summary.
3. Analyzes how well your profile fits the specific job requirements.
"""
)
# Resume upload
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
# Job description input
job_description = st.text_area("Enter Job Description", height=200, placeholder="Paste the job description here...")
# Process button with optimized flow
if uploaded_file is not None and job_description and st.button("Analyze Job Fit"):
# Create a placeholder for the progress bar
progress_bar = st.progress(0)
status_text = st.empty()
# Step 1: Extract text
status_text.text("Step 1/3: Extracting text from resume...")
resume_text = extract_text_from_file(uploaded_file)
progress_bar.progress(25)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Step 2: Generate summary
status_text.text("Step 2/3: Analyzing resume and generating summary...")
summary, summarization_time = summarize_resume_text(resume_text)
progress_bar.progress(50)
# Display summary
st.subheader("Your Resume Summary")
st.markdown(summary)
st.info(f"Summary generated in {summarization_time:.2f} seconds")
# Step 3: Generate job fit assessment
status_text.text("Step 3/3: Evaluating job fit...")
assessment, fit_score, match_percentage, category_details, job_requirements, assessment_time = analyze_job_fit(summary, job_description)
progress_bar.progress(100)
# Clear status messages
status_text.empty()
# Display job fit results
st.subheader("Job Fit Assessment")
# Display fit score with label
fit_labels = {
0: "NOT FIT ❌",
1: "POTENTIAL FIT ⚠️",
2: "STRONG FIT ✅"
}
# Show the score prominently
st.markdown(f"## Overall Result: {fit_labels[fit_score]}")
# Display match percentage
if match_percentage >= 85:
st.success(f"**Match Score:** {match_percentage}% 🌟")
elif match_percentage >= 70:
st.success(f"**Match Score:** {match_percentage}% ✅")
elif match_percentage >= 50:
st.warning(f"**Match Score:** {match_percentage}% ⚠️")
else:
st.error(f"**Match Score:** {match_percentage}% 🔍")
# Display assessment
st.markdown("### Assessment")
st.markdown(assessment)
# Add detailed score breakdown
st.markdown("### Score Breakdown")
# Create a neat table with category scores
breakdown_data = []
for category, details in category_details.items():
if category == "experience":
label = "Experience"
matching_info = f"{details['candidate_years']} years (Required: {details['required_years']} years)"
else:
# Get the nice label for the category
label = {"technical_skills": "Technical Skills",
"soft_skills": "Soft Skills",
"education": "Education",
"problem_solving": "Problem Solving",
"domain_knowledge": "Domain Knowledge",
"collaboration": "Collaboration"}[category]
matching_info = ", ".join(details["matching_keywords"][:3]) if details.get("matching_keywords") else "None detected"
# Add formatted breakdown row
breakdown_data.append({
"Category": label,
"Score": f"{details['adjusted_score']}%",
"Matching Items": matching_info
})
# Convert to DataFrame and display
breakdown_df = pd.DataFrame(breakdown_data)
# Remove the index column entirely
st.table(breakdown_df.set_index('Category').reset_index()) # This removes the numerical index
# Show a note about how scores are calculated
with st.expander("How are these scores calculated?"):
st.markdown("""
- **Technical Skills** (40% of total): Evaluates programming languages, software tools, and technical requirements
- **Soft Skills** (15% of total): Assesses communication, teamwork, and interpersonal abilities
- **Education** (10% of total): Compares educational requirements with candidate's background
- **Problem Solving** (15% of total): Measures analytical thinking and approach to challenges
- **Domain Knowledge** (10% of total): Evaluates industry-specific experience and knowledge
- **Collaboration** (10% of total): Assesses team skills and cross-functional collaboration
- **Experience** (20% overall modifier): Years of relevant experience compared to job requirements
Scores are calculated based on keyword matches in your resume, with diminishing returns applied (first few skills matter more than later ones).
""")
st.info(f"Assessment completed in {assessment_time:.2f} seconds")
# Add potential next steps based on the fit score
st.subheader("Recommended Next Steps")
if fit_score == 2:
st.markdown("""
- Consider applying for this position as you appear to be a strong match
- Prepare for technical interviews by focusing on your strongest skills
- Review the job description again to prepare for specific interview questions
""")
elif fit_score == 1:
st.markdown("""
- Focus on highlighting your strongest matching skills in your application
- Consider addressing skill gaps in your cover letter by connecting your experience to the requirements
- Prepare to discuss how your transferable skills apply to this position
""")
else:
st.markdown("""
- This position may not be the best fit for your current skills and experience
- Consider roles that better align with your demonstrated strengths
- If you're set on this type of position, focus on developing skills in the areas mentioned in the job description
""") |