Spaces:
Sleeping
Sleeping
File size: 18,452 Bytes
8e1d297 99470dd 848089c d2d6501 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c ca31f44 848089c 5d07781 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c 97150aa 848089c ce7c5e8 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c 3e9d890 848089c 8057156 848089c 8057156 848089c 8057156 848089c 8057156 848089c 8057156 848089c 8057156 848089c 8057156 848089c d3c5eab 848089c 7733908 848089c ee0c7bb 848089c ee0c7bb 848089c 92e31bf 848089c ee0c7bb 848089c 92e31bf 848089c bd6afd6 848089c cda9adf 848089c 4110522 848089c cda9adf 848089c ee0c7bb 848089c 4110522 848089c 4110522 848089c 4110522 848089c 4110522 848089c 4110522 848089c 92e31bf 848089c ee0c7bb 92e31bf ee0c7bb 848089c d3c5eab 848089c d3c5eab 848089c d3c5eab 848089c ee0c7bb 848089c 92e31bf 848089c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import streamlit as st
import pandas as pd
import re
import json
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import time
# Set page title and configuration
st.set_page_config(
page_title="Resume-Job Fit Analyzer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Download NLTK resources if needed
@st.cache_resource
def download_nltk_resources():
try:
nltk.data.find('tokenizers/punkt')
nltk.data.find('corpora/stopwords')
except LookupError:
nltk.download('punkt')
nltk.download('stopwords')
return stopwords.words('english')
stop_words = download_nltk_resources()
# Load models
@st.cache_resource
def load_models():
"""Load and cache the NLP models"""
models = {}
# Use BART for resume parsing
models['parser'] = pipeline(
"text2text-generation",
model="facebook/bart-base", # This would be the fine-tuned model in production
device=0 if torch.cuda.is_available() else -1
)
# Use Qwen for evaluation
models['evaluator'] = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
models['evaluator_tokenizer'] = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
return models
# Extract skills from text
def extract_skills(text, skill_keywords):
"""Extract skills from text based on a predefined list of skills"""
found_skills = []
text_lower = text.lower()
for skill in skill_keywords:
# Create a regular expression pattern for whole word matching
pattern = r'\b' + re.escape(skill.lower()) + r'\b'
if re.search(pattern, text_lower):
found_skills.append(skill)
return list(set(found_skills))
# Parse resume
def parse_resume(resume_text, models):
"""Extract structured information from resume text"""
# In production, this would use the fine-tuned BART model
# For now, we'll implement a simple rule-based parser
# Clean the text
clean_text = re.sub(r'\s+', ' ', resume_text).strip()
# Extract common skill keywords (this would be a more extensive list in production)
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL",
"React", "Angular", "Vue", "Node.js", "Django", "Flask", "Spring",
"TensorFlow", "PyTorch", "Scikit-learn", "Machine Learning", "Deep Learning", "NLP",
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions",
"REST API", "GraphQL", "Microservices", "Serverless"
]
soft_skills = [
"Leadership", "Communication", "Teamwork", "Problem-solving", "Critical thinking",
"Time management", "Adaptability", "Creativity", "Collaboration", "Presentation"
]
# Extract skills
found_tech_skills = extract_skills(clean_text, tech_skills)
found_soft_skills = extract_skills(clean_text, soft_skills)
# Extract experience using regex patterns (simplified)
experience_pattern = r'(?:Experience|EXPERIENCE|Work Experience|WORK EXPERIENCE).*?(?:Education|EDUCATION|Skills|SKILLS|$)'
experience_match = re.search(experience_pattern, clean_text, re.DOTALL)
experience_text = experience_match.group(0) if experience_match else ""
# Extract education using regex patterns (simplified)
education_pattern = r'(?:Education|EDUCATION).*?(?:Skills|SKILLS|Experience|EXPERIENCE|$)'
education_match = re.search(education_pattern, clean_text, re.DOTALL)
education_text = education_match.group(0) if education_match else ""
# Estimate years of experience (simplified)
years_exp = 0
year_patterns = [
r'(\d{4})\s*-\s*(?:present|current|now|2023|2024|2025)',
r'(\d{4})\s*-\s*(\d{4})'
]
for pattern in year_patterns:
matches = re.findall(pattern, clean_text, re.IGNORECASE)
for match in matches:
if isinstance(match, tuple):
start_year = int(match[0])
end_year = int(match[1]) if match[1].isdigit() else 2025
years_exp += (end_year - start_year)
else:
start_year = int(match)
years_exp += (2025 - start_year)
# Cap reasonable years
years_exp = min(years_exp, 30)
# Create structured data
structured_data = {
"skills": {
"technical": found_tech_skills,
"soft": found_soft_skills
},
"experience": {
"years": years_exp,
"summary": experience_text[:300] + "..." if len(experience_text) > 300 else experience_text
},
"education": education_text[:300] + "..." if len(education_text) > 300 else education_text
}
return structured_data
# Parse job description
def parse_job_description(job_text):
"""Extract key requirements from job description"""
# Clean the text
clean_text = re.sub(r'\s+', ' ', job_text).strip()
# Extract common skill keywords (same as resume parser)
tech_skills = [
"Python", "Java", "C++", "JavaScript", "TypeScript", "Go", "Rust", "SQL",
"React", "Angular", "Vue", "Node.js", "Django", "Flask", "Spring",
"TensorFlow", "PyTorch", "Scikit-learn", "Machine Learning", "Deep Learning", "NLP",
"AWS", "Azure", "GCP", "Docker", "Kubernetes", "CI/CD", "Jenkins", "GitHub Actions",
"REST API", "GraphQL", "Microservices", "Serverless"
]
soft_skills = [
"Leadership", "Communication", "Teamwork", "Problem-solving", "Critical thinking",
"Time management", "Adaptability", "Creativity", "Collaboration", "Presentation"
]
# Extract skills
required_tech_skills = extract_skills(clean_text, tech_skills)
required_soft_skills = extract_skills(clean_text, soft_skills)
# Extract years of experience requirement (simplified)
exp_patterns = [
r'(\d+)\+?\s*(?:years|yrs|yr)(?:\s*of)?\s*(?:experience|exp)',
r'(?:experience|exp)(?:\s*of)?\s*(\d+)\+?\s*(?:years|yrs|yr)'
]
required_years = 0
for pattern in exp_patterns:
matches = re.findall(pattern, clean_text, re.IGNORECASE)
if matches:
# Take the highest mentioned years
required_years = max([int(y) for y in matches if y.isdigit()] + [required_years])
# Extract job title
title_pattern = r'^(.*?)(?:\n|$)'
title_match = re.search(title_pattern, clean_text)
job_title = title_match.group(1).strip() if title_match else "Not specified"
# Create structured data
structured_data = {
"title": job_title,
"requirements": {
"technical_skills": required_tech_skills,
"soft_skills": required_soft_skills,
"years_experience": required_years
},
"full_text": job_text
}
return structured_data
# Calculate match score
def calculate_match_score(resume_data, job_data):
"""Calculate how well the resume matches the job description"""
scores = {}
# Calculate skill match percentage
required_tech_skills = set(job_data["requirements"]["technical_skills"])
candidate_tech_skills = set(resume_data["skills"]["technical"])
required_soft_skills = set(job_data["requirements"]["soft_skills"])
candidate_soft_skills = set(resume_data["skills"]["soft"])
if required_tech_skills:
tech_match = len(candidate_tech_skills.intersection(required_tech_skills)) / len(required_tech_skills)
scores["technical_skills"] = {
"score": int(tech_match * 100),
"matched": list(candidate_tech_skills.intersection(required_tech_skills)),
"missing": list(required_tech_skills - candidate_tech_skills)
}
else:
scores["technical_skills"] = {"score": 0, "matched": [], "missing": []}
if required_soft_skills:
soft_match = len(candidate_soft_skills.intersection(required_soft_skills)) / len(required_soft_skills)
scores["soft_skills"] = {
"score": int(soft_match * 100),
"matched": list(candidate_soft_skills.intersection(required_soft_skills)),
"missing": list(required_soft_skills - candidate_soft_skills)
}
else:
scores["soft_skills"] = {"score": 0, "matched": [], "missing": []}
# Experience match
required_years = job_data["requirements"]["years_experience"]
candidate_years = resume_data["experience"]["years"]
if required_years > 0:
if candidate_years >= required_years:
exp_score = 100
else:
exp_score = int((candidate_years / required_years) * 100)
scores["experience"] = {
"score": exp_score,
"candidate_years": candidate_years,
"required_years": required_years
}
else:
scores["experience"] = {
"score": 100 if candidate_years > 0 else 50,
"candidate_years": candidate_years,
"required_years": "Not specified"
}
# Calculate overall score (weighted)
tech_weight = 0.6
soft_weight = 0.2
exp_weight = 0.2
overall_score = (
scores["technical_skills"]["score"] * tech_weight +
scores["soft_skills"]["score"] * soft_weight +
scores["experience"]["score"] * exp_weight
)
scores["overall"] = int(overall_score)
return scores
# Generate expert assessment using Qwen
def generate_assessment(resume_data, job_data, match_scores, models):
"""Generate an expert assessment using Qwen model"""
# Prepare context
job_title = job_data["title"]
matched_skills = match_scores["technical_skills"]["matched"]
missing_skills = match_scores["technical_skills"]["missing"]
experience_match = match_scores["experience"]
overall_score = match_scores["overall"]
# Determine fit classification
fit_status = "FIT" if overall_score >= 70 else "NOT FIT"
# Create prompt for Qwen
prompt = f"""
<|im_start|>system
You are an expert resume evaluator. Analyze how well a candidate fits a job posting and provide professional feedback.
<|im_end|>
<|im_start|>user
Evaluate this candidate for a {job_title} position.
Overall match score: {overall_score}%
Technical skills match: {match_scores["technical_skills"]["score"]}%
Soft skills match: {match_scores["soft_skills"]["score"]}%
Experience match: {experience_match["score"]}%
Candidate has: {experience_match["candidate_years"]} years of experience
Position requires: {experience_match["required_years"]} years of experience
Matched technical skills: {", ".join(matched_skills) if matched_skills else "None"}
Missing technical skills: {", ".join(missing_skills) if missing_skills else "None"}
Create a professional assessment of this candidate. First state whether they are a FIT or NOT FIT for the position, then explain why with specific strengths and development areas.
<|im_end|>
<|im_start|>assistant
"""
try:
# Generate the assessment using Qwen
tokenizer = models['evaluator_tokenizer']
qwen_model = models['evaluator']
inputs = tokenizer(prompt, return_tensors="pt")
outputs = qwen_model.generate(
inputs.input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.9
)
assessment = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the assistant's response
if "<|im_start|>assistant" in assessment:
assessment = assessment.split("<|im_start|>assistant")[-1]
# Clean up any remaining markers
assessment = re.sub(r'<\|im_(start|end)\|>', '', assessment)
assessment = assessment.strip()
# If no assessment was generated, create a fallback
if not assessment or len(assessment) < 50:
assessment = generate_fallback_assessment(resume_data, job_data, match_scores, fit_status)
except Exception as e:
st.error(f"Error generating assessment: {str(e)}")
assessment = generate_fallback_assessment(resume_data, job_data, match_scores, fit_status)
return assessment, fit_status
# Generate fallback assessment
def generate_fallback_assessment(resume_data, job_data, match_scores, fit_status):
"""Generate a fallback assessment if the model fails"""
job_title = job_data["title"]
matched_skills = match_scores["technical_skills"]["matched"]
missing_skills = match_scores["technical_skills"]["missing"]
overall_score = match_scores["overall"]
if fit_status == "FIT":
assessment = f"""FIT: This candidate demonstrates a strong alignment with the {job_title} position, achieving an overall match score of {overall_score}%. Their proficiency in {', '.join(matched_skills) if matched_skills else 'relevant skills'} positions them well to contribute effectively from the start. The candidate's experience level is suitable for the role's requirements. To maximize their success, they could consider developing expertise in {', '.join(missing_skills) if missing_skills else 'additional specialized areas relevant to this role'}.
"""
else:
assessment = f"""NOT FIT: This candidate currently shows limited alignment with the {job_title} position, with an overall match score of {overall_score}%. While they demonstrate some relevant capabilities in {', '.join(matched_skills) if matched_skills else 'a few areas'}, they would need to develop expertise in critical areas such as {', '.join(missing_skills) if missing_skills else 'key technical requirements for this position'}. The candidate may become more competitive for this role by focusing on these skill gaps and gaining more relevant experience.
"""
return assessment
# Create the main header and interface
st.title("Resume-Job Fit Analyzer")
st.markdown("### Evaluate how well a resume matches a job description")
# Setup columns for input
col1, col2 = st.columns(2)
with col1:
# Resume input
st.subheader("Resume")
resume_text = st.text_area("Paste resume text here", height=300,
placeholder="Paste the candidate's resume text here...")
with col2:
# Job description input
st.subheader("Job Description")
job_description = st.text_area("Paste job description here", height=300,
placeholder="Paste the job description here...")
# Analysis button
analyze_button = st.button("Analyze Match", type="primary", use_container_width=True)
# Main analysis logic
if analyze_button:
if not resume_text or not job_description:
st.error("Please provide both a resume and a job description.")
else:
with st.spinner("Analyzing resume and job match..."):
# Record start time
start_time = time.time()
# Load models (uses caching so only loads once)
models = load_models()
# Parse resume and job description
resume_data = parse_resume(resume_text, models)
job_data = parse_job_description(job_description)
# Calculate match score
match_scores = calculate_match_score(resume_data, job_data)
# Generate assessment
assessment, fit_status = generate_assessment(resume_data, job_data, match_scores, models)
# Calculate execution time
execution_time = time.time() - start_time
# Display results
st.success(f"Analysis complete in {execution_time:.2f} seconds")
# Display fit status prominently
st.markdown(f"## Overall Result: {fit_status}")
# Display match score
st.subheader("Match Score")
score_col1, score_col2, score_col3 = st.columns(3)
with score_col1:
st.metric("Overall Match", f"{match_scores['overall']}%")
with score_col2:
st.metric("Technical Skills", f"{match_scores['technical_skills']['score']}%")
with score_col3:
st.metric("Experience Match", f"{match_scores['experience']['score']}%")
# Show skills breakdown
st.subheader("Skills Breakdown")
skill_col1, skill_col2 = st.columns(2)
with skill_col1:
st.markdown("##### Matched Skills")
if match_scores["technical_skills"]["matched"]:
for skill in match_scores["technical_skills"]["matched"]:
st.markdown(f"β
{skill}")
else:
st.markdown("No matched skills found")
with skill_col2:
st.markdown("##### Missing Skills")
if match_scores["technical_skills"]["missing"]:
for skill in match_scores["technical_skills"]["missing"]:
st.markdown(f"β {skill}")
else:
st.markdown("No missing skills detected")
# Show experience comparison
st.subheader("Experience")
exp_col1, exp_col2 = st.columns(2)
with exp_col1:
st.markdown(f"**Required**: {job_data['requirements']['years_experience']} years")
with exp_col2:
st.markdown(f"**Candidate has**: {resume_data['experience']['years']} years")
# Display detailed assessment
st.subheader("Expert Assessment")
st.markdown(assessment)
# Show parsed data (expandable)
with st.expander("View Parsed Data"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Resume Data")
st.json(resume_data)
with col2:
st.subheader("Job Requirements")
st.json(job_data) |