Spaces:
Sleeping
Sleeping
File size: 5,321 Bytes
cf8a522 92f45fe 7716c5c 8e1d297 92f45fe 8e1d297 4c77f62 8e1d297 92f45fe 7716c5c 92f45fe 7716c5c 9753cc9 92f45fe 9753cc9 92f45fe 7716c5c 92f45fe 7716c5c 92f45fe 8e1d297 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c d836318 7716c5c 8e1d297 6088e9d 8e1d297 6088e9d d836318 7716c5c 8e1d297 d836318 7716c5c d836318 8e1d297 586dcd2 8e1d297 d836318 7716c5c d836318 7716c5c 8e1d297 7716c5c 8e1d297 d836318 8e1d297 9753cc9 8e1d297 d836318 7716c5c d836318 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import tempfile
import re
import streamlit as st
import docx
import textract
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join([para.text for para in document.paragraphs])
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# textract requires a filename, so create a temporary file.
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp.flush()
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
except Exception as e:
text = f"Error processing DOC file: {e}"
finally:
try:
os.remove(tmp_filename)
except Exception:
pass
else:
text = "Unsupported file type."
return text
#####################################
# Function: Extract Basic Resume Information
#####################################
def extract_basic_resume_info(text):
"""
Parse the extracted text to summarize basic info:
- Name
- Age
- Work Experience
- Expected Industry/Direction
Returns a dictionary of extracted data.
"""
info = {
"Name": None,
"Age": None,
"Work Experience": None,
"Expected Industry/Direction": None,
}
# Extract Name (e.g., "Name: John Doe")
name_match = re.search(r"[Nn]ame[:\-]\s*([A-Za-z\s]+)", text)
if name_match:
info["Name"] = name_match.group(1).strip()
else:
# Heuristic: search for a line with two or three capitalized words.
potential_names = re.findall(r"\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+){1,2}\b", text)
if potential_names:
info["Name"] = potential_names[0]
# Extract Age (e.g., "Age: 28")
age_match = re.search(r"[Aa]ge[:\-]\s*(\d{1,2})", text)
if age_match:
info["Age"] = age_match.group(1)
# Extract Work Experience (e.g., "5 years of experience")
exp_match = re.search(r"(\d+)\s+(years|yrs)\s+(?:of\s+)?experience", text, re.IGNORECASE)
if exp_match:
info["Work Experience"] = f"{exp_match.group(1)} {exp_match.group(2)}"
else:
# Fallback: look for overall experience information.
exp_line = re.search(r"(Experience|Background)[:\-]\s*(.*)", text, re.IGNORECASE)
if exp_line:
info["Work Experience"] = exp_line.group(2).strip()
# Extract Expected Industry/Direction
industry_match = re.search(r"(Industry|Interest|Direction)[:\-]\s*(.+)", text, re.IGNORECASE)
if industry_match:
info["Expected Industry/Direction"] = industry_match.group(2).strip()
return info
#####################################
# Function: Summarize Basic Info into a Paragraph
#####################################
def summarize_basic_info(info):
"""
Create a paragraph summary from the basic resume information.
"""
parts = []
if info.get("Name"):
parts.append(f"{info['Name']}")
if info.get("Age"):
parts.append(f"aged {info['Age']}")
if info.get("Work Experience"):
parts.append(f"with {info['Work Experience']} of work experience")
if info.get("Expected Industry/Direction"):
parts.append(f"seeking opportunities in {info['Expected Industry/Direction']}")
if parts:
summary_paragraph = "The candidate is " + ", ".join(parts) + "."
else:
summary_paragraph = "Basic information could not be extracted from the resume."
return summary_paragraph
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj):
if file_obj is None:
return None, None
# Extract text content from the file.
resume_text = extract_text_from_file(file_obj)
# Extract and summarize basic info.
basic_info = extract_basic_resume_info(resume_text)
summary_paragraph = summarize_basic_info(basic_info)
return resume_text, summary_paragraph
#####################################
# Streamlit Interface
#####################################
st.title("Resume Basic Info Summary")
st.markdown("""
Upload your resume file in **.doc** or **.docx** format. The app will extract the content and generate a summary paragraph
that highlights the candidate's basic information (name, age, work experience, and expected industry/direction).
""")
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
if st.button("Process Resume"):
if uploaded_file is None:
st.error("Please upload a file first.")
else:
with st.spinner("Processing resume..."):
resume_text, summary_paragraph = process_resume(uploaded_file)
st.subheader("Summary of Basic Information")
st.markdown(summary_paragraph) |