CR7CAD's picture
Update app.py
2e98a93 verified
raw
history blame
9.41 kB
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume Analyzer and Company Suitability Checker",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
models['summarizer'] = pipeline("summarization", model="t5-base")
# Load feature extraction model for similarity
models['feature_extractor'] = pipeline("feature-extraction", model="bert-base-uncased")
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .docx and .doc files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# For .doc files, we need to save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
temp_file.write(file_obj.getvalue())
temp_path = temp_file.name
# Use docx2txt which is generally faster
try:
text = docx2txt.process(temp_path)
except Exception:
text = "Could not process .doc file. Please convert to .docx format."
# Clean up temp file
os.unlink(temp_path)
except Exception as e:
text = f"Error processing DOC file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
return text
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a structured summary of the resume text including name, age,
expected job industry, and skills of the candidate.
"""
start_time = time.time()
summarizer = models['summarizer']
# Handle long text
max_input_length = 1024 # Model limit
# Append instructions to guide the model to extract structured information
prompt = f"Summarize this resume and include the candidate's name, age, expected job industry, and skills: {resume_text[:max_input_length]}"
if len(resume_text) > max_input_length:
# Process in chunks if text is too long
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(f"Provide name, age, expected job industry, and skills of the candidate: {candidate_summary[:max_input_length]}",
max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(prompt, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
# Format the summary to ensure it contains the required information
# If the model doesn't extract all required information, we'll add placeholders
formatted_summary = candidate_summary
# Check if the summary contains the required information and add labels if needed
if "name:" not in formatted_summary.lower() and "name " not in formatted_summary.lower():
formatted_summary = "Name: [Not explicitly mentioned in resume]\n" + formatted_summary
if "age:" not in formatted_summary.lower() and "age " not in formatted_summary.lower():
formatted_summary += "\nAge: [Not explicitly mentioned in resume]"
if "industry:" not in formatted_summary.lower() and "expected job" not in formatted_summary.lower():
formatted_summary += "\nExpected Job Industry: [Based on resume content]"
if "skills:" not in formatted_summary.lower() and "skills " not in formatted_summary.lower():
formatted_summary += "\nSkills: [Key skills extracted from resume]"
execution_time = time.time() - start_time
return formatted_summary, execution_time
#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt.
Returns a score in the range [0, 1] and execution time.
"""
start_time = time.time()
feature_extractor = models['feature_extractor']
# Extract features (embeddings)
candidate_features = feature_extractor(candidate_summary)
company_features = feature_extractor(company_prompt)
# Convert to numpy arrays and flatten if needed
candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
company_vec = np.mean(np.array(company_features[0]), axis=0)
# Compute cosine similarity (1 - cosine distance)
similarity = 1 - cosine(candidate_vec, company_vec)
execution_time = time.time() - start_time
return similarity, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.docx**, **.doc**, or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a structured candidate summary with name, age, expected job industry, and skills.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])
# Company description text area
company_prompt = st.text_area(
"Enter the company description or job requirements:",
height=150,
help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)
# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
with st.spinner("Processing..."):
# Extract text from resume
resume_text = extract_text_from_file(uploaded_file)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
st.error(resume_text)
else:
# Generate summary
summary, summarization_time = summarize_resume_text(resume_text, models)
# Display summary
st.subheader("Candidate Summary")
st.markdown(summary)
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
# Only compute similarity if company description is provided
if company_prompt:
similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
# Display similarity score
st.subheader("Suitability Assessment")
st.markdown(f"**Matching Score:** {similarity_score:.2%}")
st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
# Provide interpretation
if similarity_score >= 0.85:
st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
elif similarity_score >= 0.70:
st.success("Good match! This candidate shows strong potential for the position.")
elif similarity_score >= 0.50:
st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
else:
st.error("Low match. The candidate's profile may not align well with the requirements.")