File size: 9,411 Bytes
cf8a522
4077883
8e1d297
92f45fe
2e98a93
 
501c91b
 
 
e0405b6
d2d6501
5d07781
 
 
 
 
 
 
 
 
 
 
 
 
8e1d297
 
501c91b
c6d228e
d2d6501
5d07781
501c91b
d2d6501
 
501c91b
86037f3
e0405b6
501c91b
601e2aa
e0405b6
d2d6501
 
 
 
c6d228e
 
501c91b
8e1d297
501c91b
92f45fe
2e98a93
7716c5c
92f45fe
501c91b
 
92f45fe
7716c5c
 
9753cc9
501c91b
c6d228e
9753cc9
92f45fe
cf98c48
92f45fe
cf98c48
 
 
 
 
 
 
 
 
 
 
 
 
d8bcf0c
 
2e98a93
 
 
 
 
92f45fe
2e98a93
92f45fe
8e1d297
 
501c91b
7716c5c
c6d228e
d836318
2e98a93
 
d836318
e0405b6
 
c6d228e
d2d6501
501c91b
e0405b6
c6d228e
2e98a93
 
 
501c91b
 
 
 
 
 
 
 
 
 
 
2e98a93
 
501c91b
2e98a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d4f4dd
e0405b6
 
2e98a93
d836318
cccaa8e
501c91b
cccaa8e
501c91b
cccaa8e
501c91b
 
cccaa8e
e0405b6
 
501c91b
c6d228e
501c91b
 
 
41d8604
501c91b
 
 
41d8604
501c91b
 
e0405b6
 
 
501c91b
cccaa8e
7716c5c
e0405b6
8e1d297
d2d6501
 
cc18787
2e98a93
d2d6501
2e98a93
501c91b
d2d6501
 
cccaa8e
e0405b6
2e98a93
d2d6501
e0405b6
 
 
 
 
 
3661e7e
e0405b6
 
 
501c91b
 
e0405b6
2e98a93
e0405b6
d2d6501
e0405b6
 
 
 
 
2e98a93
e0405b6
 
501c91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import io
import streamlit as st
import docx
import docx2txt
import tempfile
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time

# Set page title and hide sidebar
st.set_page_config(
    page_title="Resume Analyzer and Company Suitability Checker",
    initial_sidebar_state="collapsed"
)

# Hide sidebar completely with custom CSS
st.markdown("""
<style>
    [data-testid="collapsedControl"] {display: none;}
    section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)

#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
    """Load models at startup"""
    with st.spinner("Loading AI models... This may take a minute on first run."):
        models = {}
        # Load summarization model
        models['summarizer'] = pipeline("summarization", model="t5-base")
        
        # Load feature extraction model for similarity
        models['feature_extractor'] = pipeline("feature-extraction", model="bert-base-uncased")
        
        return models

# Preload models immediately when app starts
models = load_models()

#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
    """
    Extract text from .docx and .doc files.
    Returns the extracted text or an error message if extraction fails.
    """
    filename = file_obj.name
    ext = os.path.splitext(filename)[1].lower()
    text = ""

    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
        except Exception as e:
            text = f"Error processing DOCX file: {e}"
    elif ext == ".doc":
        try:
            # For .doc files, we need to save to a temp file
            with tempfile.NamedTemporaryFile(delete=False, suffix='.doc') as temp_file:
                temp_file.write(file_obj.getvalue())
                temp_path = temp_file.name
        
            # Use docx2txt which is generally faster
            try:
                text = docx2txt.process(temp_path)
            except Exception:
                text = "Could not process .doc file. Please convert to .docx format."
        
            # Clean up temp file
            os.unlink(temp_path)
        except Exception as e:
            text = f"Error processing DOC file: {e}"
    elif ext == ".txt":
        try:
            text = file_obj.getvalue().decode("utf-8")
        except Exception as e:
            text = f"Error processing TXT file: {e}"
    else:
        text = "Unsupported file type. Please upload a .docx, .doc, or .txt file."
    return text

#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
    """
    Generates a structured summary of the resume text including name, age, 
    expected job industry, and skills of the candidate.
    """
    start_time = time.time()
    
    summarizer = models['summarizer']
    
    # Handle long text
    max_input_length = 1024  # Model limit
    
    # Append instructions to guide the model to extract structured information
    prompt = f"Summarize this resume and include the candidate's name, age, expected job industry, and skills: {resume_text[:max_input_length]}"
    
    if len(resume_text) > max_input_length:
        # Process in chunks if text is too long
        chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
        summaries = []
        
        for chunk in chunks:
            chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
            summaries.append(chunk_summary)
        
        candidate_summary = " ".join(summaries)
        if len(candidate_summary) > max_input_length:
            candidate_summary = summarizer(f"Provide name, age, expected job industry, and skills of the candidate: {candidate_summary[:max_input_length]}", 
                                          max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    else:
        candidate_summary = summarizer(prompt, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    
    # Format the summary to ensure it contains the required information
    # If the model doesn't extract all required information, we'll add placeholders
    formatted_summary = candidate_summary
    
    # Check if the summary contains the required information and add labels if needed
    if "name:" not in formatted_summary.lower() and "name " not in formatted_summary.lower():
        formatted_summary = "Name: [Not explicitly mentioned in resume]\n" + formatted_summary
    
    if "age:" not in formatted_summary.lower() and "age " not in formatted_summary.lower():
        formatted_summary += "\nAge: [Not explicitly mentioned in resume]"
    
    if "industry:" not in formatted_summary.lower() and "expected job" not in formatted_summary.lower():
        formatted_summary += "\nExpected Job Industry: [Based on resume content]"
    
    if "skills:" not in formatted_summary.lower() and "skills " not in formatted_summary.lower():
        formatted_summary += "\nSkills: [Key skills extracted from resume]"
    
    execution_time = time.time() - start_time
    
    return formatted_summary, execution_time

#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
    """
    Compute the similarity between candidate summary and company prompt.
    Returns a score in the range [0, 1] and execution time.
    """
    start_time = time.time()
    
    feature_extractor = models['feature_extractor']
    
    # Extract features (embeddings)
    candidate_features = feature_extractor(candidate_summary)
    company_features = feature_extractor(company_prompt)
    
    # Convert to numpy arrays and flatten if needed
    candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
    company_vec = np.mean(np.array(company_features[0]), axis=0)
    
    # Compute cosine similarity (1 - cosine distance)
    similarity = 1 - cosine(candidate_vec, company_vec)
    
    execution_time = time.time() - start_time
    
    return similarity, execution_time

#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
    """
Upload your resume file in **.docx**, **.doc**, or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a structured candidate summary with name, age, expected job industry, and skills.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)

# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx, .doc, or .txt)", type=["docx", "doc", "txt"])

# Company description text area
company_prompt = st.text_area(
    "Enter the company description or job requirements:",
    height=150,
    help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)

# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
    with st.spinner("Processing..."):
        # Extract text from resume
        resume_text = extract_text_from_file(uploaded_file)
        
        if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx, .doc, or .txt file.":
            st.error(resume_text)
        else:
            # Generate summary
            summary, summarization_time = summarize_resume_text(resume_text, models)
            
            # Display summary
            st.subheader("Candidate Summary")
            st.markdown(summary)
            st.info(f"Summarization completed in {summarization_time:.2f} seconds")
            
            # Only compute similarity if company description is provided
            if company_prompt:
                similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
                
                # Display similarity score
                st.subheader("Suitability Assessment")
                st.markdown(f"**Matching Score:** {similarity_score:.2%}")
                st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
                
                # Provide interpretation
                if similarity_score >= 0.85:
                    st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
                elif similarity_score >= 0.70:
                    st.success("Good match! This candidate shows strong potential for the position.")
                elif similarity_score >= 0.50:
                    st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
                else:
                    st.error("Low match. The candidate's profile may not align well with the requirements.")