Spaces:
Sleeping
Sleeping
import os | |
import tempfile | |
import re | |
import streamlit as st | |
import docx | |
import textract | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import pipeline | |
import threading | |
##################################### | |
# Load Models - Optimized with Threading | |
##################################### | |
def load_models(): | |
""" | |
Load all models in parallel using threading to speed up initialization | |
""" | |
models = {} | |
def load_summarizer_thread(): | |
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum", device=0 if st.session_state.get('use_gpu', False) else -1) | |
def load_sbert_thread(): | |
models['sbert'] = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device='cuda' if st.session_state.get('use_gpu', False) else 'cpu') | |
# Start threads to load models in parallel | |
threads = [ | |
threading.Thread(target=load_summarizer_thread), | |
threading.Thread(target=load_sbert_thread) | |
] | |
for thread in threads: | |
thread.start() | |
for thread in threads: | |
thread.join() | |
return models | |
##################################### | |
# Function: Extract Text from File - Optimized | |
##################################### | |
def extract_text_from_file(file_obj): | |
""" | |
Extract text from .doc and .docx files. | |
Returns the extracted text or an error message if extraction fails. | |
""" | |
filename = file_obj.name | |
ext = os.path.splitext(filename)[1].lower() | |
text = "" | |
if ext == ".docx": | |
try: | |
document = docx.Document(file_obj) | |
# Use a list comprehension and join for better performance | |
text = "\n".join(para.text for para in document.paragraphs if para.text.strip()) | |
except Exception as e: | |
text = f"Error processing DOCX file: {e}" | |
elif ext == ".doc": | |
try: | |
# Use a context manager for better file handling | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp: | |
tmp.write(file_obj.read()) | |
tmp_filename = tmp.name | |
text = textract.process(tmp_filename).decode("utf-8") | |
# Clean up the temporary file immediately | |
os.unlink(tmp_filename) | |
except Exception as e: | |
text = f"Error processing DOC file: {e}" | |
else: | |
text = "Unsupported file type." | |
return text | |
##################################### | |
# Function: Summarize Resume Text - Optimized | |
##################################### | |
def summarize_resume_text(resume_text, models): | |
""" | |
Generates a concise summary of the resume text using the pre-loaded summarization model. | |
""" | |
summarizer = models['summarizer'] | |
# Optimize text processing - only use essential text | |
# Break text into chunks and summarize important parts | |
max_input_length = 1024 # PEGASUS-XSUM limit | |
if len(resume_text) > max_input_length: | |
# Instead of simple trimming, extract key sections | |
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)] | |
summaries = [] | |
for chunk in chunks: | |
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] | |
summaries.append(chunk_summary) | |
candidate_summary = " ".join(summaries) | |
# Summarize again if combined summary is too long | |
if len(candidate_summary) > max_input_length: | |
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text'] | |
else: | |
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text'] | |
return candidate_summary | |
##################################### | |
# Function: Compare Candidate Summary to Company Prompt - Optimized | |
##################################### | |
def compute_suitability(candidate_summary, company_prompt, models): | |
""" | |
Compute the cosine similarity between candidate summary and company prompt embeddings. | |
Returns a score in the range [0, 1]. | |
""" | |
sbert_model = models['sbert'] | |
# Encode texts in parallel (if supported by model) | |
embeddings = sbert_model.encode([candidate_summary, company_prompt], convert_to_tensor=True) | |
candidate_embed, company_embed = embeddings[0], embeddings[1] | |
cosine_sim = util.cos_sim(candidate_embed, company_embed) | |
score = float(cosine_sim.item()) | |
return score | |
##################################### | |
# Main Resume Processing Logic | |
##################################### | |
def process_resume(file_obj, models): | |
""" | |
Extracts text from the uploaded file and then generates a summary | |
using a text summarization model. | |
""" | |
with st.status("Processing resume...") as status: | |
status.update(label="Extracting text from resume...") | |
resume_text = extract_text_from_file(file_obj) | |
# Check if resume_text is valid | |
if not resume_text or resume_text.strip() == "": | |
status.update(label="Error: No text could be extracted", state="error") | |
return "" | |
status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...") | |
candidate_summary = summarize_resume_text(resume_text, models) | |
status.update(label="Processing complete!", state="complete") | |
return candidate_summary | |
##################################### | |
# Streamlit Interface - Optimized | |
##################################### | |
def main(): | |
st.set_page_config(page_title="Resume Analyzer", layout="wide") | |
# Initialize session state for GPU usage | |
if 'use_gpu' not in st.session_state: | |
st.session_state.use_gpu = False | |
# Only show sidebar settings on first run | |
with st.sidebar: | |
st.title("Settings") | |
if st.checkbox("Use GPU (if available)", value=st.session_state.use_gpu): | |
st.session_state.use_gpu = True | |
else: | |
st.session_state.use_gpu = False | |
st.info("Using GPU can significantly speed up model inference if available") | |
# Load models - this happens only once due to caching | |
with st.spinner("Loading AI models..."): | |
models = load_models() | |
st.title("Resume Analyzer and Company Suitability Checker") | |
st.markdown( | |
""" | |
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks: | |
1. Extracts text from the resume. | |
2. Uses a transformer-based model to generate a concise candidate summary. | |
3. Compares the candidate summary with a company profile to produce a suitability score. | |
""" | |
) | |
# Use columns for better layout | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
# File uploader for resume | |
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"]) | |
# Button to process the resume | |
if st.button("Process Resume", type="primary", use_container_width=True): | |
if uploaded_file is None: | |
st.error("Please upload a resume file first.") | |
else: | |
candidate_summary = process_resume(uploaded_file, models) | |
if candidate_summary: # only if summary is generated | |
st.session_state["candidate_summary"] = candidate_summary | |
# Display candidate summary if available | |
if "candidate_summary" in st.session_state: | |
st.subheader("Candidate Summary") | |
st.markdown(st.session_state["candidate_summary"]) | |
with col2: | |
# Pre-defined company prompt for Google LLC. | |
default_company_prompt = ( | |
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, " | |
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong " | |
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming " | |
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. " | |
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture " | |
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology." | |
) | |
# Company prompt text area. | |
company_prompt = st.text_area( | |
"Enter company details:", | |
value=default_company_prompt, | |
height=150, | |
) | |
# Button to compute the suitability score. | |
if st.button("Compute Suitability Score", type="primary", use_container_width=True): | |
if "candidate_summary" not in st.session_state: | |
st.error("Please process the resume first!") | |
else: | |
candidate_summary = st.session_state["candidate_summary"] | |
if candidate_summary.strip() == "": | |
st.error("Candidate summary is empty; please check your resume file.") | |
elif company_prompt.strip() == "": | |
st.error("Please enter the company information.") | |
else: | |
with st.spinner("Computing suitability score..."): | |
score = compute_suitability(candidate_summary, company_prompt, models) | |
# Display score with a progress bar for visual feedback | |
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)") | |
st.progress(score) | |
# Add interpretation of score | |
if score > 0.75: | |
st.info("Excellent match! Your profile appears very well suited for this company.") | |
elif score > 0.5: | |
st.info("Good match. Your profile aligns with many aspects of the company's requirements.") | |
elif score > 0.3: | |
st.info("Moderate match. Consider highlighting more relevant skills or experience.") | |
else: | |
st.info("Low match. Your profile may need significant adjustments to better align with this company.") | |
if __name__ == "__main__": | |
main() |