CR7CAD's picture
Update app.py
c6d228e verified
raw
history blame
10.6 kB
import os
import tempfile
import re
import streamlit as st
import docx
import textract
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
import threading
#####################################
# Load Models - Optimized with Threading
#####################################
@st.cache_resource(show_spinner=False)
def load_models():
"""
Load all models in parallel using threading to speed up initialization
"""
models = {}
def load_summarizer_thread():
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum", device=0 if st.session_state.get('use_gpu', False) else -1)
def load_sbert_thread():
models['sbert'] = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", device='cuda' if st.session_state.get('use_gpu', False) else 'cpu')
# Start threads to load models in parallel
threads = [
threading.Thread(target=load_summarizer_thread),
threading.Thread(target=load_sbert_thread)
]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
return models
#####################################
# Function: Extract Text from File - Optimized
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .doc and .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
# Use a list comprehension and join for better performance
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".doc":
try:
# Use a context manager for better file handling
with tempfile.NamedTemporaryFile(delete=False, suffix=".doc") as tmp:
tmp.write(file_obj.read())
tmp_filename = tmp.name
text = textract.process(tmp_filename).decode("utf-8")
# Clean up the temporary file immediately
os.unlink(tmp_filename)
except Exception as e:
text = f"Error processing DOC file: {e}"
else:
text = "Unsupported file type."
return text
#####################################
# Function: Summarize Resume Text - Optimized
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the pre-loaded summarization model.
"""
summarizer = models['summarizer']
# Optimize text processing - only use essential text
# Break text into chunks and summarize important parts
max_input_length = 1024 # PEGASUS-XSUM limit
if len(resume_text) > max_input_length:
# Instead of simple trimming, extract key sections
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
# Summarize again if combined summary is too long
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
return candidate_summary
#####################################
# Function: Compare Candidate Summary to Company Prompt - Optimized
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the cosine similarity between candidate summary and company prompt embeddings.
Returns a score in the range [0, 1].
"""
sbert_model = models['sbert']
# Encode texts in parallel (if supported by model)
embeddings = sbert_model.encode([candidate_summary, company_prompt], convert_to_tensor=True)
candidate_embed, company_embed = embeddings[0], embeddings[1]
cosine_sim = util.cos_sim(candidate_embed, company_embed)
score = float(cosine_sim.item())
return score
#####################################
# Main Resume Processing Logic
#####################################
def process_resume(file_obj, models):
"""
Extracts text from the uploaded file and then generates a summary
using a text summarization model.
"""
with st.status("Processing resume...") as status:
status.update(label="Extracting text from resume...")
resume_text = extract_text_from_file(file_obj)
# Check if resume_text is valid
if not resume_text or resume_text.strip() == "":
status.update(label="Error: No text could be extracted", state="error")
return ""
status.update(label=f"Extracted {len(resume_text)} characters. Generating summary...")
candidate_summary = summarize_resume_text(resume_text, models)
status.update(label="Processing complete!", state="complete")
return candidate_summary
#####################################
# Streamlit Interface - Optimized
#####################################
def main():
st.set_page_config(page_title="Resume Analyzer", layout="wide")
# Initialize session state for GPU usage
if 'use_gpu' not in st.session_state:
st.session_state.use_gpu = False
# Only show sidebar settings on first run
with st.sidebar:
st.title("Settings")
if st.checkbox("Use GPU (if available)", value=st.session_state.use_gpu):
st.session_state.use_gpu = True
else:
st.session_state.use_gpu = False
st.info("Using GPU can significantly speed up model inference if available")
# Load models - this happens only once due to caching
with st.spinner("Loading AI models..."):
models = load_models()
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.doc** or **.docx** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# Use columns for better layout
col1, col2 = st.columns([1, 1])
with col1:
# File uploader for resume
uploaded_file = st.file_uploader("Upload Resume", type=["doc", "docx"])
# Button to process the resume
if st.button("Process Resume", type="primary", use_container_width=True):
if uploaded_file is None:
st.error("Please upload a resume file first.")
else:
candidate_summary = process_resume(uploaded_file, models)
if candidate_summary: # only if summary is generated
st.session_state["candidate_summary"] = candidate_summary
# Display candidate summary if available
if "candidate_summary" in st.session_state:
st.subheader("Candidate Summary")
st.markdown(st.session_state["candidate_summary"])
with col2:
# Pre-defined company prompt for Google LLC.
default_company_prompt = (
"Google LLC, a global leader in technology and innovation, specializes in internet services, cloud computing, "
"artificial intelligence, and software development. As part of Alphabet Inc., Google seeks candidates with strong "
"problem-solving skills, adaptability, and collaboration abilities. Technical roles require proficiency in programming "
"languages such as Python, Java, C++, Go, or JavaScript, with expertise in data structures, algorithms, and system design. "
"Additionally, skills in AI, cybersecurity, UX/UI design, and digital marketing are highly valued. Google fosters a culture "
"of innovation, expecting candidates to demonstrate creativity, analytical thinking, and a passion for cutting-edge technology."
)
# Company prompt text area.
company_prompt = st.text_area(
"Enter company details:",
value=default_company_prompt,
height=150,
)
# Button to compute the suitability score.
if st.button("Compute Suitability Score", type="primary", use_container_width=True):
if "candidate_summary" not in st.session_state:
st.error("Please process the resume first!")
else:
candidate_summary = st.session_state["candidate_summary"]
if candidate_summary.strip() == "":
st.error("Candidate summary is empty; please check your resume file.")
elif company_prompt.strip() == "":
st.error("Please enter the company information.")
else:
with st.spinner("Computing suitability score..."):
score = compute_suitability(candidate_summary, company_prompt, models)
# Display score with a progress bar for visual feedback
st.success(f"Suitability Score: {score:.2f} (range 0 to 1)")
st.progress(score)
# Add interpretation of score
if score > 0.75:
st.info("Excellent match! Your profile appears very well suited for this company.")
elif score > 0.5:
st.info("Good match. Your profile aligns with many aspects of the company's requirements.")
elif score > 0.3:
st.info("Moderate match. Consider highlighting more relevant skills or experience.")
else:
st.info("Low match. Your profile may need significant adjustments to better align with this company.")
if __name__ == "__main__":
main()