CR7CAD's picture
Update app.py
4077883 verified
raw
history blame
8.14 kB
import os
import io
import streamlit as st
import docx
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time
# Set page title
st.set_page_config(page_title="Resume Analyzer and Company Suitability Checker")
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models(summarization_model="google/pegasus-xsum", similarity_model="sentence-transformers/all-MiniLM-L6-v2"):
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
models['summarizer'] = pipeline("summarization", model=summarization_model)
# Load feature extraction model for similarity
models['feature_extractor'] = pipeline("feature-extraction", model=similarity_model)
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx or .txt file."
return text
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the selected summarization model.
"""
start_time = time.time()
summarizer = models['summarizer']
# Handle long text
max_input_length = 1024 # Model limit
if len(resume_text) > max_input_length:
# Process in chunks if text is too long
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
execution_time = time.time() - start_time
return candidate_summary, execution_time
#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
"""
Compute the similarity between candidate summary and company prompt.
Returns a score in the range [0, 1] and execution time.
"""
start_time = time.time()
feature_extractor = models['feature_extractor']
# Extract features (embeddings)
candidate_features = feature_extractor(candidate_summary)
company_features = feature_extractor(company_prompt)
# Convert to numpy arrays and flatten if needed
candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
company_vec = np.mean(np.array(company_features[0]), axis=0)
# Compute cosine similarity (1 - cosine distance)
similarity = 1 - cosine(candidate_vec, company_vec)
execution_time = time.time() - start_time
return similarity, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.docx** or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx or .txt)", type=["docx", "txt"])
# Company description text area
company_prompt = st.text_area(
"Enter the company description or job requirements:",
height=150,
help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)
# Show model selection in sidebar
st.sidebar.header("Model Settings")
# Model dropdowns - we're now only allowing one model of each type to be selected
summarization_model = st.sidebar.selectbox(
"Summarization Model",
["google/pegasus-xsum", "facebook/bart-large-cnn", "t5-small", "sshleifer/distilbart-cnn-12-6"],
index=0,
help="Select the model to use for summarizing the resume text."
)
similarity_model = st.sidebar.selectbox(
"Similarity Model",
["sentence-transformers/all-MiniLM-L6-v2", "sentence-transformers/all-mpnet-base-v2",
"sentence-transformers/paraphrase-MiniLM-L3-v2", "sentence-transformers/multi-qa-mpnet-base-dot-v1"],
index=0,
help="Select the model to use for comparing candidate summary with company profile."
)
# Reload models if changed
if st.sidebar.button("Reload Models"):
st.cache_resource.clear()
models = load_models(summarization_model, similarity_model)
st.sidebar.success("Models reloaded successfully!")
# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
with st.spinner("Processing..."):
# Extract text from resume
resume_text = extract_text_from_file(uploaded_file)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx or .txt file.":
st.error(resume_text)
else:
# Display extracted text
with st.expander("Extracted Text"):
st.text(resume_text)
# Generate summary
summary, summarization_time = summarize_resume_text(resume_text, models)
# Display summary
st.subheader("Candidate Summary")
st.write(summary)
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
# Only compute similarity if company description is provided
if company_prompt:
similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
# Display similarity score
st.subheader("Suitability Assessment")
st.markdown(f"**Matching Score:** {similarity_score:.2%}")
st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
# Provide interpretation
if similarity_score >= 0.85:
st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
elif similarity_score >= 0.70:
st.success("Good match! This candidate shows strong potential for the position.")
elif similarity_score >= 0.50:
st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
else:
st.error("Low match. The candidate's profile may not align well with the requirements.")