File size: 8,139 Bytes
cf8a522
4077883
8e1d297
92f45fe
cc18787
e0405b6
 
 
d2d6501
 
 
8e1d297
 
d2d6501
c6d228e
d2d6501
e0405b6
 
d2d6501
 
 
e0405b6
 
 
 
 
d2d6501
 
 
 
c6d228e
 
d2d6501
8e1d297
 
92f45fe
4077883
7716c5c
92f45fe
 
 
 
7716c5c
 
9753cc9
92f45fe
c6d228e
9753cc9
92f45fe
4077883
92f45fe
4077883
92f45fe
4077883
92f45fe
4077883
92f45fe
8e1d297
 
d2d6501
7716c5c
c6d228e
d836318
e0405b6
d836318
e0405b6
 
c6d228e
d2d6501
 
e0405b6
c6d228e
cc18787
d2d6501
c6d228e
 
 
 
 
 
 
 
 
 
 
 
0d4f4dd
e0405b6
 
 
d836318
cccaa8e
d2d6501
cccaa8e
c6d228e
cccaa8e
d2d6501
e0405b6
cccaa8e
e0405b6
 
 
c6d228e
e0405b6
 
 
c6d228e
e0405b6
 
 
 
 
 
 
 
 
 
cccaa8e
7716c5c
e0405b6
8e1d297
d2d6501
 
cc18787
4077883
d2d6501
 
 
 
 
cccaa8e
e0405b6
4077883
d2d6501
e0405b6
 
 
 
 
 
3661e7e
e0405b6
 
3661e7e
e0405b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2d6501
e0405b6
 
 
 
 
 
 
 
 
 
 
 
4077883
e0405b6
d2d6501
e0405b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2d6501
e0405b6
 
 
 
d2d6501
e0405b6
 
 
 
 
 
 
c6d228e
e0405b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import io
import streamlit as st
import docx
from transformers import pipeline
import numpy as np
from scipy.spatial.distance import cosine
import time

# Set page title
st.set_page_config(page_title="Resume Analyzer and Company Suitability Checker")

#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models(summarization_model="google/pegasus-xsum", similarity_model="sentence-transformers/all-MiniLM-L6-v2"):
    """Load models at startup"""
    with st.spinner("Loading AI models... This may take a minute on first run."):
        models = {}
        # Load summarization model
        models['summarizer'] = pipeline("summarization", model=summarization_model)
        
        # Load feature extraction model for similarity
        models['feature_extractor'] = pipeline("feature-extraction", model=similarity_model)
        
        return models

# Preload models immediately when app starts
models = load_models()

#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
    """
    Extract text from .docx files.
    Returns the extracted text or an error message if extraction fails.
    """
    filename = file_obj.name
    ext = os.path.splitext(filename)[1].lower()
    text = ""

    if ext == ".docx":
        try:
            document = docx.Document(file_obj)
            text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
        except Exception as e:
            text = f"Error processing DOCX file: {e}"
    elif ext == ".txt":
        try:
            text = file_obj.getvalue().decode("utf-8")
        except Exception as e:
            text = f"Error processing TXT file: {e}"
    else:
        text = "Unsupported file type. Please upload a .docx or .txt file."
    return text

#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
    """
    Generates a concise summary of the resume text using the selected summarization model.
    """
    start_time = time.time()
    
    summarizer = models['summarizer']
    
    # Handle long text
    max_input_length = 1024  # Model limit
    
    if len(resume_text) > max_input_length:
        # Process in chunks if text is too long
        chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
        summaries = []
        
        for chunk in chunks:
            chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
            summaries.append(chunk_summary)
        
        candidate_summary = " ".join(summaries)
        if len(candidate_summary) > max_input_length:
            candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    else:
        candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
    
    execution_time = time.time() - start_time
    
    return candidate_summary, execution_time

#####################################
# Function: Compare Candidate Summary to Company Prompt
#####################################
def compute_suitability(candidate_summary, company_prompt, models):
    """
    Compute the similarity between candidate summary and company prompt.
    Returns a score in the range [0, 1] and execution time.
    """
    start_time = time.time()
    
    feature_extractor = models['feature_extractor']
    
    # Extract features (embeddings)
    candidate_features = feature_extractor(candidate_summary)
    company_features = feature_extractor(company_prompt)
    
    # Convert to numpy arrays and flatten if needed
    candidate_vec = np.mean(np.array(candidate_features[0]), axis=0)
    company_vec = np.mean(np.array(company_features[0]), axis=0)
    
    # Compute cosine similarity (1 - cosine distance)
    similarity = 1 - cosine(candidate_vec, company_vec)
    
    execution_time = time.time() - start_time
    
    return similarity, execution_time

#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
    """
Upload your resume file in **.docx** or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Compares the candidate summary with a company profile to produce a suitability score.
"""
)

# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx or .txt)", type=["docx", "txt"])

# Company description text area
company_prompt = st.text_area(
    "Enter the company description or job requirements:",
    height=150,
    help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)

# Show model selection in sidebar
st.sidebar.header("Model Settings")

# Model dropdowns - we're now only allowing one model of each type to be selected
summarization_model = st.sidebar.selectbox(
    "Summarization Model",
    ["google/pegasus-xsum", "facebook/bart-large-cnn", "t5-small", "sshleifer/distilbart-cnn-12-6"],
    index=0,
    help="Select the model to use for summarizing the resume text."
)

similarity_model = st.sidebar.selectbox(
    "Similarity Model",
    ["sentence-transformers/all-MiniLM-L6-v2", "sentence-transformers/all-mpnet-base-v2", 
     "sentence-transformers/paraphrase-MiniLM-L3-v2", "sentence-transformers/multi-qa-mpnet-base-dot-v1"],
    index=0,
    help="Select the model to use for comparing candidate summary with company profile."
)

# Reload models if changed
if st.sidebar.button("Reload Models"):
    st.cache_resource.clear()
    models = load_models(summarization_model, similarity_model)
    st.sidebar.success("Models reloaded successfully!")

# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
    with st.spinner("Processing..."):
        # Extract text from resume
        resume_text = extract_text_from_file(uploaded_file)
        
        if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx or .txt file.":
            st.error(resume_text)
        else:
            # Display extracted text
            with st.expander("Extracted Text"):
                st.text(resume_text)
            
            # Generate summary
            summary, summarization_time = summarize_resume_text(resume_text, models)
            
            # Display summary
            st.subheader("Candidate Summary")
            st.write(summary)
            st.info(f"Summarization completed in {summarization_time:.2f} seconds")
            
            # Only compute similarity if company description is provided
            if company_prompt:
                similarity_score, similarity_time = compute_suitability(summary, company_prompt, models)
                
                # Display similarity score
                st.subheader("Suitability Assessment")
                st.markdown(f"**Matching Score:** {similarity_score:.2%}")
                st.info(f"Similarity computation completed in {similarity_time:.2f} seconds")
                
                # Provide interpretation
                if similarity_score >= 0.85:
                    st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
                elif similarity_score >= 0.70:
                    st.success("Good match! This candidate shows strong potential for the position.")
                elif similarity_score >= 0.50:
                    st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
                else:
                    st.error("Low match. The candidate's profile may not align well with the requirements.")