CR7CAD's picture
Update app.py
41d8604 verified
raw
history blame
8.09 kB
import os
import io
import streamlit as st
import docx
from transformers import pipeline
import time
# Set page title and hide sidebar
st.set_page_config(
page_title="Resume Analyzer and Company Suitability Checker",
initial_sidebar_state="collapsed"
)
# Hide sidebar completely with custom CSS
st.markdown("""
<style>
[data-testid="collapsedControl"] {display: none;}
section[data-testid="stSidebar"] {display: none;}
</style>
""", unsafe_allow_html=True)
#####################################
# Preload Models
#####################################
@st.cache_resource(show_spinner=True)
def load_models():
"""Load models at startup"""
with st.spinner("Loading AI models... This may take a minute on first run."):
models = {}
# Load summarization model
models['summarizer'] = pipeline("summarization", model="google/pegasus-xsum")
# Load text generation model for suitability assessment
models['text_generator'] = pipeline("text-generation", model="gpt2") # You can use different models
return models
# Preload models immediately when app starts
models = load_models()
#####################################
# Function: Extract Text from File
#####################################
def extract_text_from_file(file_obj):
"""
Extract text from .docx files.
Returns the extracted text or an error message if extraction fails.
"""
filename = file_obj.name
ext = os.path.splitext(filename)[1].lower()
text = ""
if ext == ".docx":
try:
document = docx.Document(file_obj)
text = "\n".join(para.text for para in document.paragraphs if para.text.strip())
except Exception as e:
text = f"Error processing DOCX file: {e}"
elif ext == ".txt":
try:
text = file_obj.getvalue().decode("utf-8")
except Exception as e:
text = f"Error processing TXT file: {e}"
else:
text = "Unsupported file type. Please upload a .docx or .txt file."
return text
#####################################
# Function: Summarize Resume Text
#####################################
def summarize_resume_text(resume_text, models):
"""
Generates a concise summary of the resume text using the selected summarization model.
"""
start_time = time.time()
summarizer = models['summarizer']
# Handle long text
max_input_length = 1024 # Model limit
if len(resume_text) > max_input_length:
# Process in chunks if text is too long
chunks = [resume_text[i:i+max_input_length] for i in range(0, min(len(resume_text), 3*max_input_length), max_input_length)]
summaries = []
for chunk in chunks:
chunk_summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False)[0]['summary_text']
summaries.append(chunk_summary)
candidate_summary = " ".join(summaries)
if len(candidate_summary) > max_input_length:
candidate_summary = summarizer(candidate_summary[:max_input_length], max_length=150, min_length=40, do_sample=False)[0]['summary_text']
else:
candidate_summary = summarizer(resume_text, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
execution_time = time.time() - start_time
return candidate_summary, execution_time
#####################################
# Function: Generate Suitability Assessment
#####################################
def generate_suitability_assessment(candidate_summary, company_prompt, models):
"""
Generate a suitability assessment using text generation instead of similarity.
Returns the generated assessment text and execution time.
"""
start_time = time.time()
text_generator = models['text_generator']
# Create a prompt for the text generation model
prompt = f"""
Resume Summary: {candidate_summary}
Company Description: {company_prompt}
Suitability Assessment:
This candidate is a"""
# Generate text
max_length = 80 + len(prompt.split()) # Limit output length
generated_text = text_generator(
prompt,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
top_p=0.9,
do_sample=True
)[0]['generated_text']
# Extract only the assessment part (after the prompt)
assessment = generated_text[len(prompt):].strip()
# Determine a numerical score from the text
# This is a simplified approach - we're looking for positive and negative words
positive_words = ['excellent', 'perfect', 'great', 'good', 'strong', 'ideal', 'qualified']
negative_words = ['poor', 'weak', 'bad', 'insufficient', 'inadequate', 'not a good']
assessment_lower = assessment.lower()
# Simple heuristic for score estimation
score = 0.5 # Default middle score
for word in positive_words:
if word in assessment_lower:
score += 0.1 # Increase score for positive words
for word in negative_words:
if word in assessment_lower:
score -= 0.1 # Decrease score for negative words
# Clamp the score between 0 and 1
score = max(0.1, min(0.9, score))
execution_time = time.time() - start_time
return assessment, score, execution_time
#####################################
# Main Streamlit Interface
#####################################
st.title("Resume Analyzer and Company Suitability Checker")
st.markdown(
"""
Upload your resume file in **.docx** or **.txt** format. The app performs the following tasks:
1. Extracts text from the resume.
2. Uses a transformer-based model to generate a concise candidate summary.
3. Uses text generation to assess the candidate's suitability for the company.
"""
)
# File uploader
uploaded_file = st.file_uploader("Upload your resume (.docx or .txt)", type=["docx", "txt"])
# Company description text area
company_prompt = st.text_area(
"Enter the company description or job requirements:",
height=150,
help="Enter a detailed description of the company culture, role requirements, and desired skills.",
)
# Process button
if uploaded_file is not None and company_prompt and st.button("Analyze Resume"):
with st.spinner("Processing..."):
# Extract text from resume
resume_text = extract_text_from_file(uploaded_file)
if resume_text.startswith("Error") or resume_text == "Unsupported file type. Please upload a .docx or .txt file.":
st.error(resume_text)
else:
# Generate summary
summary, summarization_time = summarize_resume_text(resume_text, models)
# Display summary
st.subheader("Candidate Summary")
st.write(summary)
st.info(f"Summarization completed in {summarization_time:.2f} seconds")
# Generate suitability assessment with text generation
assessment, estimated_score, generation_time = generate_suitability_assessment(summary, company_prompt, models)
# Display assessment
st.subheader("Suitability Assessment")
st.write(assessment)
st.markdown(f"**Estimated Matching Score:** {estimated_score:.2%}")
st.info(f"Assessment generated in {generation_time:.2f} seconds")
# Provide interpretation based on estimated score
if estimated_score >= 0.85:
st.success("Excellent match! This candidate's profile is strongly aligned with the company requirements.")
elif estimated_score >= 0.70:
st.success("Good match! This candidate shows strong potential for the position.")
elif estimated_score >= 0.50:
st.warning("Moderate match. The candidate meets some requirements but there may be gaps.")
else:
st.error("Low match. The candidate's profile may not align well with the requirements.")